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E X T E N S I O N S

We turn next to some more technical statistical concerns often raised
regarding interaction-term usage in regression analysis. The first

issue regards separate-sample versus pooled-sample estimation of inter-
active effects. The second issue concerns estimation and interpretation of
interaction terms in nonlinear models, including qualitative dependent-
variable models like logit and probit models of binary outcomes. The
third issue concerns modeling and estimating stochastically (rather than
determinately) interactive relationships.1

Separate-Sample versus Pooled-Sample Estimation 
of Interactive Effects

Researchers often explore the interactive effects of nominal (binary, cat-
egorical, etc.) variables by splitting their samples according to these cat-
egories and estimating the same model separately in each subsample.2 In
behavioral research, for example, scholars may analyze interactive hy-
potheses that individual characteristics structure the impact of other
variables by estimating the same model in subsamples separated by race,

1. See Franzese (2005) for further, formal discussion of the first and third issues.
2. Indeed, sometimes even ordinal or cardinal variables are separated into high(er) and

low(er) categories for sample splitting in this manner. In addition to the considerations to
be discussed in this section, this will typically entail inefficiency as the gradations of ordi -
nal or cardinal information are discarded in the conversion to nominal categorization, al-
though the practice may be justifiable in some cases on other grounds.
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gender, and so on. A researcher might, for instance, estimate the effect of
socioeconomic status on political participation separately in samples of
male and female respondents to explore whether socioeconomic status
affects the propensity to vote differently by gender. In comparative or in-
ternational politics too, researchers might estimate the same model sep-
arately by country or region to explore whether national or regional con-
texts condition the effects of key variables. A political economist might,
for instance, estimate a model of electoral cycles in monetary policy sep-
arately in subsamples of fixed- and flexible-exchange-rate country times.
Similar subsample estimation strategies populate all subfields of political
science and other social sciences.

Such subsample estimation (1) produces valid estimates of the (con-
ditional) effects of the other variables at these different values of the
“moderating” variable, (2) commendably recognizes the conditionality
of the underlying arguments, and (3) can (perhaps with some effort) re-
produce any of the efficiency and other desirable statistical properties of
the alternative strategy of pooling with (nominal) interactions. However,
these subsample procedures also isolate, at least presentationally, one
variable as the moderator in what is logically a symmetric process—if x
moderates the effect of z on y, then z moderates the effect of x on y and
vice versa—thereby obscuring the converse. More fundamentally, these
procedures do not facilitate statistical comparison of the effects of “mod-
erated” or “moderating” variables; that is, one cannot as easily deter-
mine whether any differences in estimated effects across subsamples are
statistically significant or as easily determine the (conditional) effects of
the variable being treated as the moderating variable as one can in the
pooling strategy.

An alternative approach is to estimate a model that keeps the sub -
samples together and that includes interaction terms of all of the other
covariates, including the constant, with the variable being treated as the
moderator; this is sometimes called a “fully dummy-interactive” model.
The two approaches (separate sample versus fully dummy interactive
pooled sample) extract almost identical sets of information from the
data, but pooled-sample estimation extracts slightly more, potentially
more efficiently, and more easily allows statistical testing of the full set
of typical interactive hypotheses. That is, any desirable statistical prop-
erties that one can achieve by one strategy can, perhaps with consider-
able effort, be achieved by the other (see, e.g., Jusko and Shively 2005).
However, we believe that the pooled interactive strategy lends itself more
easily to obtaining these desirable qualities and, in some cases, also to
presenting and interpreting results. Hence, we suggest that separate-
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sample estimation be reserved for exploratory and sensitivity and robust-
ness consideration stages of analysis. We recommend pooled-sample ap-
proaches for final analysis and presentation. In either case, however, we
note that theory should dictate the use of fully interactive (or separate-
subsample) versus selectively interactive models. We do not advocate that
fully interactive models or separate-sample models be used as a substitute
for theoretically informed specifications. However, if a researcher is intent
on “splitting the samples,” then estimation using a fully interactive
pooled model is a better alternative to separate-sample estimation.

As an example, a researcher, wishing to explore gender differences, g,
in the effect of socioeconomic status and other independent variables, X,
on propensity to vote, y, separates the sample into males and females and
estimates

Sample g � Male: ym � X�m � um (37)

Sample g � Female: yf � X�f � uf (38)

Let M (F) be the number of observations in the male (female) sample.
Let k index the columns of X (e.g., xgk represents the kth independent
variable for the gender g sample; �gk is the coefficient on that kth inde-
pendent variable for that gender g sample) and let K be the number of
independent variables (excluding the constant). To obtain distinct coeffi-
cient estimates by gender, the researcher has several options.

Most easily, the researcher could estimate models (37) and (38) sepa-
rately, once per subsample. Or, he or she could pool the data into one
sample and reconfigure the X matrix by manually creating separate Xm

and Xf variables for each column of X, where Xm replaces each female
respondent’s X value with zero and Xf does so for male respondents. This
allows distinct coefficients on Xm and Xf and, if the constant (intercept) is
also separated into Xm and Xf in this way, will produce exactly the same
coefficient estimates as separate-sample estimation does. Identically to
this manual procedure, the researcher could simply create an indicator
variable for gm � Male and another indicator for gf � Female and include
these two indicators in place of the intercept and the interaction of each
of these indicators with all of the other independent variables in place of
those independent variables. Each gmX and gfX here will equal the Xm

and Xf from the manual procedure just described, and so this also pro-
duces exactly the same coefficient estimates as the separate-sample esti-
mation. Finally, the researcher could simply create one gender indicator,
say, the female gf, and include in the pooled-sample estimation all of the
X independent variables (including the constant), unmodified, plus that gf



indicator times each of these X variables (including the constant, which
product just reproduces gf). This, too, would produce the same sub-
stantive estimates for the model as separate-sample estimation, but the
coefficients would now refer to different aspects of that substance. The
coefficient on each variable xk (including the intercept) in this last op-
tion would refer to the effect on y of that variable among males,
whereas those coefficients on each xk plus the coefficient on the corre-
sponding interaction term, gf xk, would refer to the effect on y of that
xk among females. And the coefficient on gf xk would refer to the dif-
ference in the effect of that xk among females and the effect of that xk

among males. If all of these approaches produce the same substantive
results from their estimates, why might researchers prefer one or the
other of them?

In our review, researchers rarely offer reasons for presenting separate
subsample estimations of interactive effects. Perhaps some do not realize
that pooled-sample alternatives using interaction terms exist and, as we
show next, are at least equivalent on all grounds except, perhaps, con-
venience. Others may note more explicitly that, lacking a priori hy -
potheses about what differences in the effects of the various xk to expect
across their subsamples, they wish simply to explore inductively what
some possible candidates for interactive effects might be, and they find
separate-sample estimation a convenient and easily interpreted means of
conducting such exploration. The more technically savvy might even
suggest that they did not wish to impose or estimate any distributional
features of the residual term across subsamples, which would be neces-
sary to validate statistical comparison of subsample coefficient estimates
in pooled estimation.

In the separate-sample approach, researchers estimate one equation
for males:

1 Xm11 ��� XmK1 �m0y1m �1m�m1� � �   � (39)
� � ��yMm

� �
�Mm

��
1 Xm1M ���    XmKM

� �
�mK

�    
and the exactly analogous equation for females. Table 26 provides OLS
regression results from conducting this split-sample analysis (using our
very simple Support for Social Welfare example). Typically, researchers
will estimate these equations separately in each subsample and “eyeball”
the results for differences in estimated �, which, assuming no other inter-
actions, reflect directly the effect of the associated x in that subsample.
This provides the often-cited ease of interpretation in separate-sample es-
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TABLE 26. OLS Regression Results, Support for Social Welfare, Pooled and
Split Samples

Pooled Sample Males Only Females Only
Coefficient Coefficient Coefficient

(standard error) (standard error) (standard error)
p-Value p-Value p-Value

Female �0.0031 — —
(0.0144)
0.828

Republican �0.2205 �0.2205 �0.1368
(0.0155) (0.0154) (0.0148)
0.000 0.000 0.000

Female � Republican 0.0837 — —
(0.0214)
0.000

Intercept 0.7451 0.7451 0.7420
(0.0110) (0.0109) (0.0094)
0.000 0.000 0.000

N (df ) 1,077 (1,073) 498 (496) 579 (577)
Adjusted R2 0.223 0.290 0.128
P � F 0.000 0.000 0.000

Note: Cell entries are the estimated coefficient, with standard error in parentheses, and two-sided p-
level (probability �T � � t) referring to the null hypothesis that � � 0 in italics.

timation. However, the second or third of the pooled-sample options de-
scribed earlier (i.e., creating distinct Xf and Xm variables manually or by
dummy-variable interaction) exactly replicates these separate-subsample
coefficient estimates. If researchers prefer this sort of interpretability,
pooled-sample estimation can also produce it. Presentationally, too, one
can just as easily display two columns of coefficient estimates from one
pooled-sample equation as from two separate-sample estimations. There-
fore, direct interpretability of effects by subsample cannot adjudicate be-
tween pooled-sample and separate-sample approaches since one can pre -
sent the same results in the same fashion regardless of whether those
results derived from pooled-sample or separate-sample estimation.

Underlying any separate-sample estimation in the first place is at least
the hunch that the effects of some independent variables differ across the
categories distinguished by the subsamples. Thus, certainly, anyone con-
ducting such analysis will wish to compare coefficient estimates across
such subsamples. In table 26, a researcher might eyeball the differences
in the estimated coefficient for Republican in the sample for males, �̂R �

�0.2205, and in the sample for females, �̂R � �0.1368, and conclude
(often by some unspoken or, worse, arbitrary standard) that these coef-
ficients look “different enough.” If classical OLS assumptions apply in



each subsample (the OLS �̂ are the best linear unbiased estimates
[BLUE]), then the researcher could test the statistical significance of any
differences in parameters estimated separately across subsamples by dif-
ference tests of each �̂f and corresponding �̂m:3

H0: �f � �m or  �f � �m � 0

Conducting the standard t-test of this null hypothesis:

(�̂f � �̂m) � 0 (�̂f � �̂m) (�̂f � �̂m) 
� � (40)

s.e. (�̂f � �̂m) �V(�̂f ) �V(�̂m) � 2C(�̂f ,�̂m) �V(�̂f ) �V(�̂m)

The equality of the last expression to the previous two follows in this
case, as it would not generally, because �̂f and �̂m will not covary due to
the orthogonality of the gender indicators. Using our example, we would
thus calculate ((�̂f � �̂m) � 0)/s.e.(�̂f � �̂m) � (�0.1368 � (�0.2205))/

(0.0148)2 � (0.0154)2 � 0.0837/0.0214 	 3.92. The resulting t-test on
this value suggests p � 0.0001: these estimated coefficients do appear to
be statistically distinguishable from each other.

Few researchers in our review of the literature actually conducted this
test; at best, they offered some reference to the individual standard errors
of the two coefficient estimates in question. The subsample coefficient es-
timates will be independent by construction (the orthogonality of the in-
dicator variables assures this), but the simple sum of the standard errors
of the two coefficients is not the correct standard error for the estimated
difference. The standard error of the estimated difference between the
two coefficients is the square root of the sum of the estimated variances
of the two coefficients. To conduct this comparison across subsamples of
estimated effects, the reader should square the reported standard-error
estimates, sum those variances, and square-root that sum.

Pooled-sample estimation allows a more directly interpretable formu-
lation if the goal is to test whether effects differ across subsamples.
Namely, with the right-hand side of the model specified as X and the
nominal indicator(s) times X, the coefficient(s) on the interaction terms
directly reveal the difference in effects across subsamples and the standard
t-tests of those interaction-term coefficients directly reveal the statistical
significance of those differences in effects.4 A researcher seeking to deter-

¨ ¨ ¨ ¨ ¨
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3. Researchers may also conduct the joint-hypothesis test that all of the coefficients are

equal across subsamples, H0: �̂m � �̂f , with a standard F-test: (�̂m � �̂f)�[V(�̂m � �̂f)]�1

(�̂m � �̂f) � Fk,n�k.
4. Likewise, the standard F-test on the set of interaction terms tests whether the set of

effects of X jointly differ across subsamples; see note 3.

¨



1 Xm11 ��� XmK1 0 ��� 0 �m0

ym1 � �m1

� � � �

ymM 1 Xm1M XmKM 0 ��� 0 �mK

� � (41)
yf1 0 ��� 0 1 Xf11 ��� XfK1 �f0

� 0 � �f1

ymF �  � � �

(M�F)�1

0 ��� 0 1 Xf1F XfKF �fK

(M�F)�(2K�2) 2K�2

���

���

mine whether the effect of Republican differs across females and males
would need to calculate �̂R,females � �̂R,males � 0.0837 by subtracting the
respective estimated coefficients acquired through separate-sample esti-
mation. The pooled-sample estimation already provides this information,
in the estimated coefficient, �̂FR � 0.0837. Further, instead of calculating
the estimated standard error s.e.(�̂f � �̂m) based on the two separate
 samples, per equation (40), the researcher can determine whether the dif-
ference in the effect of Republican between females and males is statisti-
cally distinguishable from zero by simply conducting a t-test using the re-
sults from the pooled-sample estimation: divide the estimated coefficient
�̂FR by its estimated standard error: 0.0837/0.0214 	 3.92.

Thus, pooled-sample estimation offers two ways of presenting the
same substantive results. One way replicates the same interpretability of
coefficients as effects in subsamples afforded by separate-sample estima-
tion. Another affords direct interpretation of coefficients as the estimated
difference between effects across subsamples, as well as the standard 
t-tests or F-tests on those coefficients as revealing the statistical signifi-
cance of that estimated difference. Pooled-sample estimation streamlines
the process of testing the substantive hypotheses that researchers often
seek to examine.

Moreover, pooling not only produces identical effect estimates as
those obtained from separate samples, but it also (under classical linear
regression model [CLRM] assumptions) constrains the variance of resid-
uals, s2, to be equal for the two samples and not to covary across sub-
samples. Separate-sample estimation makes no such assumptions; thus,
pooled-sample estimation borrows strength from the other subsample(s)
to obtain better (i.e., more efficient) standard error estimates, although
only correctly so if these assumptions are true. Formally, these features
are seen most directly for the case where X is arranged in block diagonal,
either manually or by dummy-variable interactions:
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Recall that �̂ � s2 (X�X)�1. Since the X matrix here is block diago -
nal, the inverse will also be block diagonal, and the elements for males
of (X�X)�1 and X�y, which comprise the coefficient estimate for males,
�̂m � (Xm�Xm)�1 Xm�ym, are identical to what they would have been with
the samples separated. The statistical test for the equality of the male and
female coefficient estimates is then just the standard F-test on the equal-
ity of sets of two parameters (�f � �m). Note, though, that the single s2

estimated here naturally differs from the two, s2
m and s2

f , estimated sepa-
rately in the subsample estimates. Pooled OLS assumes that s2 is the
same across the two samples. That one s2 estimate, which is the average
squared residual, sums squared residuals across the entire sample and di-
vides by N � j with the N reflecting the entire sample (M � F) and j re-
flecting all of the coefficients in the pooled estimation, including the con-
stant. Separate-sample estimation produces a separate estimate of s2 for
each subsample (e.g., s2

m and s2
f). Each separate-sample estimation sums

only the squared residuals from its subsample and divides only by the
number of observations in its subsample, minus the number of coeffi-
cients in the subsample estimation, Ns � js. The subsample estimates are
inefficient. In other words, we obtain better estimates of s2 and, with
them, of estimated variance-covariances of the coefficient estimates in
pooled-sample than in separate-sample estimation—if, indeed, the resid-
ual variances are equal across subsamples.5 In this case, the inefficiency
manifests as one of the s2

m and s2
f being larger than it needs to be and the

other smaller than it should be. More generally, some of the s2
i will be

larger than they need to be and others smaller than they should be. To
explore whether such a common error-variance assumption is war-
ranted, we can test whether heteroskedasticity instead prevails. If the
data insist that heteroskedasticity exists, then one can model that vari-
ance (or variance-covariance) structure and employ weighted (or feasible
generalized) least squares in the pooled sample.

Other model restrictions, such as constraining some coefficients to be
equal across subsamples while allowing others to vary, are also easier to
implement in pooled-sample estimation and will also, if true, enhance co-
efficient and standard-error estimates’ efficiency. For example, we may
posit, or theory may establish, that some x affects males’ and females’
voting propensities equally (or equally and oppositely, or otherwise re-
latedly in some deterministic manner). In some contexts, accounting or
other mathematical identities may even require certain relations between

5. In this case, the efficiency gains imply that estimated standard errors will be more
accurate, not necessarily lower. As pooling borrows strength from the other subsamples to
improve standard-error estimates, generally one (some) estimated effect(s) will be lower
and (some) other(s) higher.



particular coefficients. Rather than estimate both of these effects sepa-
rately, as separate-sample estimation all but requires,6 one could in
pooled-sample estimation simply refrain from including those dummy-
variable interactions (or reverse the sign of those variables in the male or
female sample, or analogously impose the constraints directly for other
cases). As with a common-variance assumption, such cross-subsample
restrictions can be tested, rather than assumed and imposed without test-
ing, and again more conveniently in pooled-sample than in separate-sub-
sample estimation. If the data insist that coefficients differ, this is easily
allowed.

Thus, in short, compared to separate-sample estimation: (1) pooled-
sample estimation can yield identical or superior interpretability; (2) it
can encourage statistical comparison of effects over mere eyeballing; and
(3) it may improve efficiency (precision) of estimation more easily if any
efficiency-enhancing cross-subsample coefficient or error variance-covari-
ance constraints are warranted. Therefore, if theory dictates that the ef-
fects of all variables should be dependent upon some x, we generally rec-
ommend that researchers present pooled-sample estimates as their final
analysis—and report on the statistical certainty of any differences in ef-
fects they deem substantively important—even if they find conducting
preliminary exploratory analysis in separate subsamples more convenient.
We reiterate that while fully interactive pooled-sample estimation is pref -
erable to separate-sample estimation, neither substitutes for a theoreti-
cally motivated model that identifies persuasively why the effect of some
(set of) variable(s) should depend on x.7

Nonlinear Models

To this point, we have limited our discussion to interactive terms in lin-
ear models. However, we must also address interactions in nonlinear
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6. To our knowledge, only some relatively complicated iterative procedure, like
MCMC (Markov chain Monte Carlo), could succeed in imposing that some �̂m � �̂f across
separate-subsample estimations, for example, and correctly gauge the statistical uncer-
tainty of that single coefficient estimate.

7. In multicategory cases, one can include X, indicators for all the categories except
one, and all the interactions of the former with the latter, in which case the excluded cate-
gory becomes the suppressed reference group that serves as the baseline for comparison.
Standard t-tests would in this case refer to whether the effect in the category in question
differs significantly from that base case for that category’s indicator. Alternatively, one
could block-diagonalize X, and then the coefficients would refer directly to the estimated
effects of each x in each category, whereas tests of significance of any differences in esti-
mated effects would require additional steps. In either case, one can interpret these inter-
active effects by calculating differences in predicted probabilities or derivatives (treating the
derivatives of noncontinuous indicators as approximations).



models, which would include most models of qualitative dependent vari-
ables, given their prevalence in social science. For nonlinear models that
include explicit linear-interactive terms among their right-hand-side vari-
ables, much of the discussion in preceding sections and chapters contin-
ues to apply. However, a further complication arises regarding the effect
of x on y when right-hand-side variables are nonlinearly related to y by
construction in the model. In logit or probit models of binary outcomes,
for example, the effect of a variable x on y depends on the values of (all)
the other variables z automatically due to the imposed nonlinear struc-
ture of the model. Thus, nonlinear models express conditional (i.e., in-
teractive) relationships of the independent to dependent variables by
construction, although they may also contain additional explicitly mod-
eled linear interactions among the right-hand-side arguments of those
nonlinear functions. The issue, then, arises regarding the proper inter -
pretation of the effects of variables upon which a conditional relation-
ship has been imposed, or assumed by construction, by virtue of the par-
ticular model specification employed.

Logit and probit models of dichotomous outcomes, for example,
both (1) impose conditional relationships of x to y by construction and
(2) use a sigmoidal (i.e., S-shaped) functional form implying specific
character to those interactions. In these sigmoidal functional forms, the
effects of changes in one variable on y are larger when the predicted
probabilities are closer to the midpoint. Noting this, Nagler (1991), for
example, critiques the claim of Wolfinger and Rosenstone (1980) that
registration requirements discourage turnout to a greater extent among
low education groups. He argues that this larger effect derives from the
functional form assumed a priori and not necessarily from an explicit or
direct interaction between education and registration requirements, for
instance, that the less educated find surmounting registration require-
ments more difficult. The logit form by itself implies that education in-
teracts with registration requirements and vice versa only because of
and only through the other variable’s effect on the overall propensity to
vote. Insofar as being less educated puts one nearer a 0.5 probability of
voting and being more educated puts one further from that point, reg-
istration requirements will have greater effect on the less educated’s
propensity to vote for that reason alone. Nagler tests whether education
and registration requirements additionally interact explicitly to move a
respondent along the S curve by including a specific linear interaction
between education and registration requirement in the argument to a
logit function. He also estimates logit coefficients on strict versus lax
registration requirements separately in samples split by education (a
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strategy discussed earlier in this chapter). He finds little support for
Wolfinger and Rosenstone’s conclusion.8

The notion that multiple explicit interactions determine one’s depen-
dent variable suggests explicit modeling of those interactions, in as pre-
cise a fashion as theoretically possible. The defense for the specific form
of interactivity implicit in logit, probit, and related models is, in fact, ex-
plicit and theoretical in this way. First, the logit and probit functional
form implies a particular and very specific set of interactions to produce
S shapes. That such S shapes should describe the relations of independent
to dependent variables is substantively and theoretically derived from the
proposition that inducing probabilities to increase or to decrease be-
comes increasingly difficult, that is, requires larger movements in inde-
pendent variables, as probabilities near one or zero (see also note 8). If
the researcher wishes to infer beyond the specific forms of interactions
that produce these S shapes, we concur with Nagler (1991) that he or she
must model those further interactions explicitly.

We now discuss in more detail the interpretation of effects in two
commonly used nonlinear models: probit and logit. For example, sup-
pose some nonlinear function, F(�), often called a “link function,” is used
to relate a binary outcome, y, with x��, where y refers to a binary depen-
dent variable, x� refers to a row vector of k � 1 regressors, and � refers

8. Similarly, Frant (1991)  reviews the research of Berry and Berry (1990) on state lot-
tery policy adoptions. Frant argues that Berry and Berry draw their conclusions about the
interaction between motivation, obstacles to innovation, and resources to overcome obsta-
cles to innovation from the assumption inherent in the probit specification they employ.
Berry and Berry (1991), however, disagree. They believe that their theory suggests that they
estimate a probit model with no interactions or a linear probability model with a number
of multiplicative terms. However, they prefer the probit model because the complexly in-
teractive theory driving their model would require “so large a number of multiplicative
terms as to render the model useless for empirical analysis because of extreme colinearity”
(578). To argue that the complexly interactive nature of one’s theory debars explicit mod-
eling of it is a very weak defense by itself for applying an arbitrary specific functional form
(probit) to allow all the independent variables to interact according to that specific func-
tional form rather than explicitly to derive the form of these complex interactions from the
theory. As we suggest and Frant (1991) notes, a stronger argument in defense would have
been to demonstrate directly and explicitly that the theory implied specifically a set of in-
teractions like those entailed inherently in a probit model, which indeed seems possible in
this case. To generalize the example to a form common in many contexts, an argument
might involve some overcoming of resistance from a broad set of conditions (explanatory
factors) being necessary to produce an outcome. It might also then invoke some notion of
a tipping point set by some values of this set of conditions and possibly even consider the
outcome to become increasingly “overdetermined” as the factors all push for the out-
come. Such an argument, which seems similar to Berry and Berry’s, would indeed imply
an S-shaped relation, such as logit or probit, between the explanatory factors and the out-
come. Alternative sources or types of interactions, however, would not be inherent in sig-
moid functions lacking those further, explicit interactions.
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to a column vector of coefficients. In such a case, one could model the
probability that y takes the value one as p(y � 1) � p � F(x��).

In the probit case, p � �(x��), where � is the cumulative standard-
normal distribution. Cumulative normal distributions are S shaped, and
so ever larger increases or decreases in x�� are required to increase or de-
crease the probability y � 1 as this probability draws closer to one or
zero. In the logit case, p � �(x��), where �(�) is the logit function:
�(x��) � ex��/(1 � ex��) or, equivalently, �(x��) � [1 � e�x��]�1. (Several
other useful formulations of the logit function also exist.)

We begin with a simple probability model that omits explicit interac-
tion terms:

p � F(x��) � F(�0 � �xx � �zz � ��� � �kw)

As always, the marginal effects of a variable x on p can be calculated
by taking the first derivative of this function.9 Note here the use of the
chain rule in differentiating the function:

�p/�x � [�p/�F(x��)][�F(x��)/�x]

�p/�x � [�p/�F(x��)][�F(x��)/�x]

In the probit case, using the same model that omits explicit interac-
tion terms, this is simply

p � �(x��) � �(�0 � �xx � �zz � � � � � �kw)
x��

1
� � e�(½)t2 dt where t � �0 � �xx � �zz � ��� � �kw

�� 
2�

1
�p/�x � [��(x��)/�x] � �(x��)�x � e�(½)(x��)2 � �x


2�

where �(x��) is the standard-normal probability density function evalu-
ated at x��.10 Thus, as is central to the theoretical proposition of an S-
shaped relationship, the magnitude of effects of x on the probability that
y � 1 is largest at p � 0.5 (at x�� � 0) and becomes smaller, approach -
ing zero, as that probability goes to one or zero (as x�� approaches in-

9. Note the distinction here between conceptualizing effects of a one-unit change in
x literally computed (i.e., p̂c � p̂a) versus marginal effects, that is, effects of an infinitesimal
change in x, �y/�x. Generally, the former is recommended for discrete variables and the lat-
ter for continuous variables. (See Greene 2003 for elaboration.)

10. The derivative of any cumulative probability distribution function (cdf), F, is the
corresponding probability density function (pdf), f, and so the derivative of �, the cdf of
the standard normal, is �, the pdf of the standard normal.



finity or negative infinity). One sees also that the effect of each x depends
on itself and all of the other variables, since all the covariates and their
coefficients appear in the �(x��) that multiplies the coefficient on x to de-
termine the effect of x.

In the logit case, again for this model omitting explicit interaction
terms, this is simply

p � �(x��) � �1 � e�x����1
� �1 � e�(�0��xx��zz������kw)��1

�p/�x � �(x��)(1 � �(x��))(�x) (42)

In the specific model of equation (42), this would be

�p e�0��xx��zz������kw

� � � �x
�x �1 � e�0��xx��zz������kw�2

� �(�0 � �xx � �zz � ��� � �kw)

� [1 � �(�0 � �xx � �zz � ��� � �kw)]�x

Obviously, as with probit, the effect of x depends on the values of x,
z, . . . , w as well as the estimated coefficients for �0, . . . , �k. We can also
see, again as with probit, that the largest magnitude effects of x occur at
p � 0.5, which occurs at x
� � 0, and that these effects become progres-
sively smaller in magnitude as p approaches one or zero, which occurs as
x�� approaches positive or negative infinity, producing that familiar S
shape again (although a slightly different S shape than probit produces).

When an explicit linear-interaction term (e.g., between x and z) is in-
cluded in the x�� part of the model, the effects of x continue to depend on
the values of the other variables via the nonlinear form, specifically the S
shape, of the model as before. In addition, movements along this S shape
induced by movements in x depend directly on the value of z as well:

x��
1                                     �0 � �xx � �zzp � �(x��) � � e�(½)t2 dt where t � � (43)

�� 
2�                                   � �xzxz � ��� � �kw

e�0��xx��zz��xzxz������kw

p � �(x��) � (44)
1 � e�0��xx��zz��xzxz������kw

For illustration, we discuss a simple empirical example predicting
turnout, using data from the 2004 National Election Studies. The de -
pendent variable, Voted, is binary: 1 if the respondent voted; 0 if not. We
model turnout as a function of two individual-level characteristics: edu-
cation, ranging from one to seventeen years of Schooling, and strength
of partisanship, StrPID, an ordinal measure equaling 0 for independents
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and 1 for leaning, 2 for weak, and 3 for strong partisans.11 We interact
education and strength of partisanship to explore whether education ex-
plicitly conditions the effect of strength of partisanship and vice versa. A
researcher might argue that education and strength of partisanship each
bring resources and motivation that reinforce each other in reducing the
costs or increasing the benefits of voting, such that increases in one vari-
able will boost the impact of the other in generating the net benefit to the
individual of voting that relates nonlinearly (specifically: sigmoidally) to
that individual’s propensity to vote. Alternatively, the researcher might
suspect the opposite: that educational and partisan resources and moti -
vations undermine each other, such that increases in one variable con-
tribute less to the net benefit of voting when the other is high than when
it is low. Notice how these propositions argue something further than that
the effect of one variable is higher or lower when the other is lower or
higher because both augment (detriment) the propensity to vote and so
each has less effect when the other already leans the individual far toward
or away from voting. This last possibility is what the S-shaped function
relating education and partisanship to vote propensity already assumes.
Formally, we specify the following model (a fully specified model of
turnout would, of course, include several additional covariates):

Voted � F(�0 � �SchSchooling � �StrStrPID � �Sch�StrSchooling 

� StrPID � �)

The logit and probit estimates appear in table 27.
The effects of x can be calculated using the derivative method or the

method of differences in predicted probabilities. For the first-derivative
approach, interpretation of a model with an explicit interaction in addi-
tion to its implicit ones would again require application of the chain rule.
For logit:

�p �p �x�� �x�� 
�                  � �(1 � e�x��)�2 e�x��(�1)

�x �x�� �x �x

ex�� 1
� � �� �(�x � �xzz)

1 � ex�� 1 � ex��

�x��
� [�(x��)][1 � �(x��)]        � p(1 � p)(�x � �xzz) (45)

�x

11. Here, as is common in such cases, we are treating the ordinal information on par-
tisan leanings recorded by this measure as interval (or effectively interval, plus only some
unimportant and unproblematic noise) by giving it simple linear coefficients in x��. 



This is the same expression as before except that now the effect of x
depends not only on the other x through [�(x��)][1 � �(x��)] but also
and again on the value of z in the manner implied by the linear interac-
tion of x and z contained in x. Thus, z modifies the effect of x on p not
only by its role in the calculation of �(x��), where it enters in the ��zz
� �xzxz terms, but also in the final term, �x��/�x, where it enters in the
expression �x��/�x � �x � �xzz. The former role is that imposed by the
assumed sigmoidal relationship from independent to dependent vari-
ables; the latter role is imposed by the explicit interaction term as z con-
ditions the effect of x on movement along that S shape.

Similarly, for the probit model, when there is an explicit interaction
between x and z:

�p �p �x�� �x�� 
�                  � �(x��) � �(x��)(�x� �xzz)

�x �x�� �x �x

1
� e�(½)(x��)2 � (�x� �xzz)                                           (46)


2�

In our example, the marginal effects of Schooling would be calcu-
lated at specific values of Schooling along varying values of StrPID,
given as �p̂/�x � p̂(1 � p̂)(�̂x � �̂xzz) in the logit case and �p̂/�x �
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TABLE 27. Logit and Probit Regression Results, Turnout

Logit Estimates Probit Estimates
Coefficient Coefficient

(standard error) (standard error)
p-Value p-Value

Years of Schooling 0.310 0.190
(0.065) (0.037)
0.000 0.000

Strength of Partisanship 0.904 0.607
(0.445) (0.251)
0.042 0.015

Years of Schooling � Strength of Partisanship �0.021 �0.019
(0.034) (0.019)
0.536 0.321

Intercept �3.842 �2.340
(0.852) (0.489)
0.000 0.000

N(df ) 1,065 (1,062) 1,065 (1,062)
lnL �476.26 �476.04
P � �2 0.000 0.000

Note: Cell entries are the estimated coefficient, with standard error in parentheses, and two-sided p-
level (probability �T � � t) referring to the null hypothesis that � � 0 in italics.



�(x��̂)(�̂x � �̂xzz) in the probit case. Table 28 and table 29 provide the
marginal effects of Schooling and StrPID, respectively, holding Schooling
and StrPID at substantively interesting values. A sample calculation of
the marginal effect of Schooling, when Schooling � 12 and StrPID � 3,
using the logit results, is

�p̂ e�3.84�0.31�12�0.904�3�0.021�12�3 e�3.84�0.31�12�0.904�3�0.021�12�3

� � ��1 � ��Sch 1�e�3.84�0.31�12�0.904�3�0.021�12�3 1�e�3.84�0.31�12�0.904�3�0.021�12�3

� (0.31 � �0.021 � 3)

� (0.861)(1 � 0.861)(0.31 � �0.021 � 3) 	 0.029

Alternatively, one could calculate the predicted probabilities, p̂, with
appropriate confidence intervals. The intuition behind calculating the
predicted probabilities in a nonlinear model is exactly the same as that
behind calculating predicted values of y in a linear model. The nonlinear
model merely requires an additional step, in projecting the linear index
(i.e., the sum of the coefficients times their covariates) through the non-
linear model onto probability space (in the cases of logit and probit). For
example, suppose we estimated the following relationship:

p � F(�0 � �xx � �zz � �xzxz)

Denote the predicted probabilities F̂ � F(x��̂), with the linear index, x��̂,
computed in identical fashion to the linear-regression case:

x��̂ � �̂0 � �̂xx � �̂zz � �̂xzxz
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TABLE 28. Marginal Effects of Schooling, Using Logit Results

Independents Leaning Partisans Weak Partisans Strong Partisans

Years of Schooling � 9 0.059 (0.007) 0.070 (0.008) 0.065 (0.010) 0.046 (0.016)
Years of Schooling � 12 0.077 (0.016) 0.067 (0.010) 0.048 (0.008) 0.029 (0.008)
Years of Schooling � 15 0.066 (0.011) 0.046 (0.005) 0.029 (0.003) 0.016 (0.003)

Note: Cell entries are the estimated marginal effect, with standard error in parentheses.

TABLE 29. Marginal Effects of Strength of Partisanship, Using Logit Results

Independents Leaning Partisans Weak Partisans Strong Partisans

Years of Schooling � 9 0.137 (0.017) 0.173 (0.035) 0.172 (0.035) 0.134 (0.018)
Years of Schooling � 12 0.162 (0.020) 0.152 (0.022) 0.117 (0.014) 0.078 (0.006)
Years of Schooling � 15 0.125 (0.032) 0.093 (0.022) 0.063 (0.011) 0.039 (0.004)

Note: Cell entries are the estimated marginal effect, with standard error in parentheses.



After calculation of the linear index, the researcher must use the link
function, F(x��̂) (here, the logit �(x��̂) or probit �(x��̂)), to convert the
linear index into probability space. In either case, the predicted proba -
bilities would be calculated at various values of x (say, between xa and
xc), holding z at some substantively meaningful and logically relevant
value (e.g., its sample mean, z̄) and of course allowing xz to vary from
xaz̄ to xcz̄.

Thus, to calculate the effect on the predicted probability of a discrete
change in x, say, from xa and xc , one would simply first compute the lin-
ear index at xa and xc :

(x��̂)a � �̂0 � �̂xxa � �̂zz̄ � �̂xzxaz̄;  

(x��̂)c � �̂0 � �̂xxc � �̂zz̄ � �̂xzxcz̄

Then one would project each linear index into probability space; for the
logit case:

e(x��̂)a e(x��̂)c
p̂a �                 ;    p̂c �

1 � e(x��̂)a 1 � e(x��̂)c

And then one simply computes the difference between the two probabil-
ities: p̂c � p̂a. For probit, the process is identical except that one uses
�(x��̂)a instead of [1 � e�(x��̂)a]�1, that is, the cumulative standard nor-
mal rather than the logit, as the link function.

We reiterate our strong recommendation that researchers compute
and report measures of uncertainty around marginal effects and pre-
dicted probabilities. Standard errors for marginal effects can be com-
puted by the delta method, as described in most statistics texts, for ex-
ample, Greene (2003, 70).12 The variance of any nonlinear function of
parameter estimates, such as an estimated marginal effect like �p̂/�x, is
approximated asymptotically as a linear function of the estimated vari-
ance-covariance matrix of the parameter estimates, here V(�̂), and the
derivative of the function with respect to �̂:13

¨
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12. For confidence intervals around predicted levels, p̂, a simpler expedient of calcu-
lating confidence intervals for the linear x��̂ and then translating those bounds to proba-
bility space using the link function will also suffice and, indeed, would have the advantage
of constraining the confidence interval bounds to lie between zero and one, which the delta
method’s linearization strategy would not. That expedient would seem unavailable for con-
fidence intervals around marginal effects and differences, however.

13. The derivative of a function with respect to a vector of its arguments is called a
gradient and denoted ��̂ , but we eschew this terminology and notation as probably less fa-
miliar to many readers.
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�p̂ �p̂
�� � �� ��p̂ �x  �x

V� � 	 � �[V(�̂)]� �� (47)
�x ��̂� ��̂�

We now apply this to the logit case, where p̂ � (1 � e�x��̂)�1, �p̂/�x � p̂(1
� p̂) �x��̂/�x.14

Next, using the product rule15 to solve [�(�p̂/�x)/��̂�]: 

�(�p̂/�x)/��̂� � [�(�x��̂/�x)/��̂�](p̂(1 � p̂)) � [�p̂/��̂�]

� ((1 � p̂)(�x��̂/�x)) � [�(1 � p̂)/��̂�](p̂(�x��̂/�x))

Reexpressing terms, given that �x��̂/�x � �̂x � �̂xzz: �(�x��̂/�x)/��̂� �

�(�̂x � �̂xzz)/��̂�. Let �̂x � �̂xzz � r��̂, where r� � [1 0 z 0], assuming
the estimated coefficients are arranged as �̂� � [�̂x �̂z �̂xz �̂0], in that
order. Differentiating: �(�x��̂/�x)/��̂� � �r��̂/��̂� � r�.

For the next term, �p̂/��̂�:

e�x��̂

�p̂/��̂� � (�p̂/�(x��̂))(�(x��̂)/��̂�) �                    x� � p̂(1 � p̂)x�
(1 � e�x��̂)2

And for the next term, �(1 � p̂)/��̂�:

�(1 � p̂)     �(1 � p̂) �(x��̂) ��1 � (1 � e�x��̂)�1� �(x��̂)
�                          �  

��̂� �(x��̂)    ��̂� �(x��̂)              ��̂�

�e�x��̂

�                  x����p̂(1� p̂)x��
(1 � e�x��̂)2

Substituting:

�(�p̂/�x)/��̂� � r�(p̂(1 � p̂)) � [p̂(1 � p̂)x�]((1 � p̂)(�x��/�x)) 

� [�(p̂(1 � p̂)x�)](p̂(�x��/�x))

Substituting �x��̂/�x � �̂x � �̂xzz: 

�(�p̂/�x)/��̂� � (p̂(1 � p̂))(r� � (1 � 2p̂)(�̂x � �̂xzz)x�) 

Then substituting into equation (47):

V(�p̂/�x) 	 (p̂(1 � p̂))((r� � (1 � 2p̂)(�̂x � �̂xzz)x�))V(�̂)(p̂(1 � p̂))

� ((r� � (1 � 2p̂)(�̂x � �̂xzz)x�))�

� (p̂(1 � p̂))2(r� � (1 � 2p̂)(�̂x � �̂xzz)x�)V(�̂)

� (r � (1 � 2p̂)(�̂x � �̂xzz)x)

¨

¨ ¨

¨ ¨

14. In the simple case that contains no explicit interaction, �p̂/�x � p̂(1 � p̂) (�x��̂/�x)
� p̂(1 � p̂)�̂x. When x interacts with another variable, z, as in equation (44), then �p̂/�x �

p̂(1 � p̂)(�̂x � �̂xzz).
15. Recall that �(f(x)g(x))/�x � �f(x)/�x g(x) � �g(x)/�x f(x).



�     �

Note that (1 � 2p̂)(�̂x � �̂xzz) is a scalar for a given set of values of x, z,
and xz that scales the values in vector x�. Let sL be the value of the scal-
ing value in the logit: sL � (1 � 2p̂)(�̂x � �̂xzz):

V(�p̂/�x) 	 (p̂(1 � p̂))2(r� � sLx�)V(�̂)(r � sLx)

� (p̂(1 � p̂))2�r�V(�̂)r � 2sLx�V(�̂)r � sL
2x�V(�̂)x�

Using our empirical example, we can calculate the estimated variance
around the estimated marginal effect of Schooling, when Schooling � 12
and StrPID � 3. In this example, x� � [12 3 36 1]; the value at which
Schooling is held is located in the first column; the value at which StrPID
is held is in the second column; the interaction term’s value appears in the
third column; and a 1 is located in the last column, to represent the inter-
cept. We established previously that (p̂ � Sch � 12, Str � 3) � 0.861. Be-
cause we are taking �p̂/�x with respect to Schooling, and because the
value of StrPID is 3, r� � [1 0 3 0]. As with linear regression, the esti-
mated variance-covariance matrix of the estimated logit or probit coeffi-
cients can be easily called by a postestimation command. In this case,

0.004    0.024  �0.002  �0.055
0.024    0.198  �0.015  �0.323

V(�̂) � � � ,
�0.002  �0.015  0.001  0.024
�0.055  �0.323  0.024  0.726

a 4 � 4 matrix that lists the estimated coefficient variances and covari-
ances in the order in which they appear in the regression results and cor-
responding with the order in which values are arrayed in x�. Substituting
the set values in x�, the values in r�, and the estimated values for p̂ and
V(�̂):

V(�p̂/�x) 	 (0.861(1 � 0.861))2

0.004  0.024  �0.002  �0.055   1
0.024  0.198  �0.015  �0.323   0

[1  0  3  0]�                                � � ��0.002  �0.015  0.001  0.024   3
�0.055  �0.323  0.024  0.726   0

0.004  0.024  �0.002  �0.055   1
0.024  0.198  �0.015  �0.323   0

�  �2sL[12  3  36  1] �                                � � ��0.002  �0.015  0.001  0.024   3
�0.055  �0.323  0.024  0.726   0

0.004  0.024  �0.002  �0.055   12
0.024  0.198  �0.015  �0.323    3

�sL
2[12  3  36  1] �                                � � ��0.002  �0.015  0.001  0.024   36

�0.055  �0.323  0.024  0.726    1

¨

¨¨ ¨

¨ ¨

¨
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where sL � (1 � 2 � 0.861)(0.31 � 0.021 � 3). A standard sta-
tistical package or a spreadsheet program can easily perform these
 calculations.

Similarly for the probit case, standard errors around marginal effects
are calculated following equation (47); specifying p̂ � �(x��̂), we have
�p̂/�x � �(x��̂)�x��̂/�x. Using the product rule, �(�p̂/�x)/��̂� �

[�(�x��̂/�x)/��̂�]�(x��̂) � (�x��̂/�x)[��(x��̂)/��̂�]. Reexpressing the first
term in brackets: �(�x��̂/�x)/��̂� � r�. The second term in brackets is
��(x��̂)/��̂� � (��(x��̂)/�(x��̂))(�(x��̂)/��̂�) � (1/
�2� e�(½)(x��̂ )2)
(�x��̂)(�(x��̂)/��̂�) � �(�(x��̂))(x��̂)x�. Substituting into �(�p̂/�x)/��̂�:
�(�p̂/�x)/��̂� � [r�]�(x��̂) � (�x��̂/�x)(�(x��̂))(x��̂)x� � �(x��̂)(r� � (�̂x

� �̂xzz)(x��̂)x�). Then substituting into equation (47):

V(�p̂/�x) 	 [(�(x��̂))(r� � x��̂(�̂x � �̂xzz)x�)]V(�̂)[(�(x��̂))

� (r� � x��̂(�̂x � �̂xzz)x�)]�

� (�(x��̂))2 (r� � x��̂(�̂x � �̂xzz)x�)V(�̂)[(r � �̂�x(�̂x � �̂xzz)x)]

Again, note that x��̂(�̂x � �̂xzz) is a scalar for a given set of values of x,
z, and xz. Let sP � x��̂(�̂x � �̂xzz). Substituting:

V(�p̂/�x) 	 (�(x��̂))2 (r� � sPx�)V(�̂)(r � sPx)

� (�(x��̂))2 (r�V(�̂)r � 2sPx�V(�̂)r � sP
2x�V(�̂)x)

For standard errors around predicted probabilities, we can also use the
delta method. In the logit case, V(p̂) 	 [�p̂/��̂]� [V(�̂)][�p̂/��̂] � [p̂(1 �

p̂)x�][V(�̂)][p̂(1 � p̂)x] � (p̂(1 � p̂))2 x�[V(�̂)]x. That is, square p̂(1 � p̂)
and multiply the result by the estimated variance-covariance matrix of the
estimated coefficients, pre- and postmultiplied by the x vector specified at

the values of interest. In the probit case, V(p̂) 	 [�(�(x��̂))x]�[V(�̂)]

[� (�(x��̂))x] � (�(x��̂))2 x�[V(�̂)]x. As with linear-regression models,
predicted probabilities are most effective presentationally when graphed
with confidence intervals. Confidence intervals can be generated using the

same formulas: p̂ � tdf,p 
�V(p̂) .
Calculation of the standard error for the difference between two pre-

dicted probabilities, say, those reflecting the effect of a specific change in
x from xa to xc , follows the same delta method:

¨

¨
¨

¨ ¨

¨ ¨
¨

¨ ¨

¨ ¨

¨ ¨ ¨

¨
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�(F̂c � F̂a)         �(F̂c � F̂a)       �F̂c �F̂aV(F̂c � F̂a) 	 � ��[V(�̂)]� � � � � ��[V(�̂)]
��̂ ��̂ ��̂ ��̂

�F̂c �F̂a� � � ���̂ ��̂

� [ f̂cx�c � f̂ ax�a][V(�̂)][ f̂cxc � f̂axa]

Here F̂a and F̂c are the link function (logit or probit here), and f̂ a and f̂ c

are their derivatives with respect to x��̂, (p̂(1 � p̂) for logit and �(x��̂)
for probit). These link functions and derivatives are evaluated at xa and
xc , respectively.

Many existing statistical software packages will calculate these stan-
dard errors of estimated probabilities for the researcher, and some will
even calculate standard errors for derivatives or differences at user-given
levels of the variables. Our intention here is to reemphasize the impor-
tance of examining effects rather than simply coefficients (or predicted
levels), be they estimated in a linear or nonlinear specification, and to
provide readers with a sense of the mathematics underlying the calcula-
tion of these estimated effects and their corresponding standard errors.

Random-Effects Models and Hierarchical Models

When modeling relationships between a set of covariates, X, and a de-
pendent variable, y, scholars make assumptions about the deterministic
(i.e., fixed) versus stochastic (i.e., random) nature of those relationships.
In the interaction context, for example, scholars might propose that the
effects of x and of z on y depend either deterministically or stochastically
on the other variable. The burgeoning “random-effects” literature pro-
poses the latter, probabilistic, relationship. (The related multilevel-model
or hierarchical-model literature addresses a similar issue, although pos-
sibly with different assumptions about the properties of the stochastic as-
pects of the relationships: see the discussion that follows.)16

Let us start thus:

y � �0 � �1x � �2z � � (48)

As before, the linear-interactive specification of the posited interactive
relationships could be

�0 � �0 � �1x � �2z,    �1 � 	1 � 	2z,    and  �2 � 	3 � 	4x (49)

¨ ¨ ¨

¨

16. For more thorough discussion of the issues in this section, see Franzese (2005).



in the deterministic case, suggesting our standard linear-interactive re-
gression model:

y � �0 � �xx � �zz � �xzxz � � (50)

where �x � �1 � 	1 , �z � �2 � 	3 , �xz � 	2 � 	4 . Notice, however, that
this standard model in fact assumes that the effect of x on y varies with
z, and the effect of z on y varies with x, without error. Likewise, the in-
tercept does not vary across repeated samples. A linear-interactive model
with random effects would instead be

�0 � �0 � �1x � �2z� �0,    �1 � 	1 � 	2z � �1,    and  

�2 � 	3 � 	4x � �2 (51)

suggesting the following similar-looking linear-interactive regression
model:

y � �0 � �xx � �zz � �xzxz � �* (52)

but with �* � � � �0 � �1x � �2z.
Thus, the distinction between the deterministically interactive and the

stochastically interactive models occurs only in the “error” term; the two
models are identical except for the difference between � and �*. In the
first case, where the conditioning effects are assumed to be deterministic,
OLS would be BLUE, that is, yielding the best (most efficient), linear un-
biased estimates (provided the model is also correctly specified in other
regards, of course). In the latter case, where effects are assumed stochas-
tic, or probabilistic, one suspects that OLS estimates might not be BLUE.
Notice, however, that, assuming all the stochastic terms have mean zero,
E(�, �0, �1, �2) � 0, and do not covary with the regressors, C({�, �0, �1,
�2}, x) � 0, as commonly done in most regression contexts including ran-
dom effects/hierarchical modeling, OLS estimation would still yield un-
biased and consistent coefficient estimates.17 On the other hand, the
composite residual’s variance, V(�*), is not constant (homoskedastic) but
differs (heteroskedastic) across observations, even if V(�) . . . V(�2) are
each constant, rendering coefficient estimates and standard errors ineffi-
cient. Moreover, this nonconstant variance moves with the values of x
and z, which implies that the standard-error estimates (but not the coef-
ficient estimates) are biased and inconsistent as well. Thus, even if the
error components in the random-effects model have constant variance,
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17. E(�̂ols) � E((X�X)�1X�y) � E((X�X)�1X�(X� � �*)) � � � E((X�X)�1X��*) � �
� 0 � � if each component of �* has mean zero and does not covary with x. See Franzese
(2005) for a fuller discussion of the proof. 



mean zero, and no correlation with regressors, as we would commonly
assume, OLS coefficient estimates will be inefficient, and OLS standard-
error estimates will be biased, inconsistent, and inefficient. These prob-
lems, though potentially serious, are probably small in magnitude in
most cases and, anyway, easy to redress by simple techniques with which
political scientists are already familiar.

As mentioned before, similar issues arise in the literature on hierar-
chical, or multilevel, models (see, e.g., Bryk and Raudenbush 2001;
Kedar and Shively 2005; Steenbergen and Jones 2002). Often these mod-
els propose that some unit-level yij depends on a contextual-level vari-
able, zj , varying only across and not within the j contexts, and a unit-
level variable, xij , and furthermore that the effect of the unit-level
variable xij depends (deterministically or stochastically) on zj :

yij � �0 � �1xij � �2zj � �ij (53)

�0 � �0(��0ij)

�1 � 	1 � 	2zj (��1j)

�2 � 	3 � 	4xij (��2ij)

which implies that one may model y for regression analysis as

y � �0 � �xx � �zz � �xzxz � �* (54)

where �* � �ij (��0ij � �1jxij � �2ijzj) and the coefficients remain identi-
cal to those given previously.

Assuming deterministic conditional relationships so that �* � �ij, that
is, the parenthetical terms are all zero, and assuming that this simple
residual is well behaved (mean zero, constant variance, and no correla-
tion with regressors, as usual), OLS is BLUE. If, instead, �ij exhibits het-
eroskedasticity and/or correlation across i or j, then OLS coefficient and
standard-error estimates would be unbiased and consistent but inef -
ficient in the case that the patterns of these nonconstant variances and/or
correlations were themselves uncorrelated with the regressors, their
cross-products, and their squares. In the case that these patterns corre-
lated in some fashion with the regressors, their cross-products, or their
squares, OLS coefficient estimates would still be unbiased and consistent
but inefficient, but OLS standard errors would be biased and inconsis-
tent as well as inefficient in this context. These standard-error inconsis-
tency problems could be redressed in a familiar manner by replacing the
OLS formula for estimating the variance-covariance of estimated coeffi-
cients with a heteroskedasticity-consistent formula like White’s or the
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appropriate heteroskedasticity-and-correlation-consistent formula, like
Newey-West for temporal correlation, Beck-Katz for contemporaneous
(spatial) correlation, or “cluster” for the case of common stochastic
shocks to all units i in each context j.

With stochastic dependence such that �* � �ij � �0ij � �1jxij � �2ijzj ,
on the other hand, OLS coefficient estimates are still unbiased and con-
sistent, but the error term presents us with two issues even in the case of
well-behaved �ij : heteroskedasticity (the composite residual term, �*,
varies; in fact, it varies depending on some linear combination of x and
z) as well as potentially severe autocorrelation (each �1j will be common
to all individuals i in context j).18

Thus, the random-effects and multilevel (hierarchical) cases produce
identical problems in OLS, and so the same solutions will apply. Note
first that some form of the familiar White or Huber-White consistent
variance-covariance estimators, that is, “robust” standard errors, will re-
dress the inconsistency in OLS estimates of the estimated coefficients’
variance-covariance, that is, V(�̂)ols.

Recall that, given nonspherical disturbances,

V(�̂) � E[(� � �̂)(� � �̂)�] � E[{� �(� � (X�X)�1 X��)}

� {� � (� � (X�X)�1X��)}�]

� E[{(X�X)�1X��}{(X�X)�1 X��}�] � E[(X�X)�1X����X(X�X)�1]

� (X�X)�1X� [E(���)]X(X�X)�1 � (X�X)�1X� [V(�)]X(X�X)�1 (55)

Under classical linear-regression assumptions, � � N(0, �2I) and E(��X)
� 0, and so this reduces to 

¨

18. Some current literature even suggests that OLS is biased in the presence of such
multilevel random effects. This is false if biased refers to the OLS coefficient estimates. Pro-
vided that the context-specific or other components of the composite error term do not cor-
relate with the regressors, OLS coefficient estimates will remain unbiased and consistent,
although inefficient. The fact that Zj and �j are both common to all individuals in context
j implies that the pattern of the nonsphericity in the composite V(�*) relates to a regressor,
Z, producing biased, inconsistent, and inefficient OLS standard-error estimates, but that
does not imply that C(Zj ,�*) is nonzero, which is the condition that would bias OLS coef-
ficient estimates. The “problem” with OLS for hierarchical models therefore resides solely
in the inefficiency of OLS coefficient estimates and in the generally poor properties of the
OLS estimates of V(�̂). The problem is similar to that typically induced by strong tempo -
ral or spatial correlation: OLS coefficient estimates are unbiased and consistent but ineffi-
cient; standard errors are biased, inconsistent, and inefficient. The inefficiency in coefficient
estimates can be dramatic if the within-context correlation of individual errors is great, per-
haps dramatic enough to render unbiasedness and consistency of little practical comfort,
but, even so, the problem is efficiency, not bias or inconsistency.

¨



V(�̂) � E[(� � �̂)(� � �̂)�] � (X�X)�1X�[V(�)](X�X)�1X

� (X�X)�1X��2IX(X�X)�1

� �2(X�X)�1X�X(X�X)�1 � �2(X�X)�1

With random effects, �* � � � �0 � �1x � �2z; in multilevel data, �*
� �ij � �0ij � �1jxij � �2ijzj. Both violate the assumptions of classical lin-
ear regression in essentially the same way. In our random-coefficient
case:

E(�*�*�) � E(� � �0 � �1x � �2z)(� � �0 � �1x � �2z)�

��� � �0�� � �1x�� � �2z�� � ��0� � �0�0� � �1x�0�

� E �� �2z�0� � �x��1� � �0x��1� � �1xx��1� � �2zx��1�    � (56)
� �z��2� � �0z��2� � �1xz��2� � �zz��2�

Even assuming that (�, �0, �1, �2) are independently and identically dis-
tributed (i.i.d.) N(0, �2I), the variance-covariance matrix for �̂ in the
random coefficient model will be

V(�̂RC) � 2�2 � xx��2 � zz��2 � �2(2I � xx� � zz�) (57)

In the hierarchical model, the basic structure is the same, but the
claim that (�, �0 , �1, �2) would be i.i.d. is less plausible because, among
other reasons, context-level variance (�1j) is unlikely to equal unit-level
variances (�ij , �0ij , �2ij). It is more plausible to assume that between-level
variation differs but within-level variation is constant. If so, the variance-
covariance of �̂ in the hierarchical case is

V(�̂HM) � 2�2
ind � xx��2

context � zz��2
ind

� �2
ind (2I � zz�)� xx��2

context (58)

Notice that the expressions for V(�̂HM) in the hierarchical case and
for V(�̂RC) in the random-coefficient case are almost identical. The only
difference is the separation we allow for the variances of components of
�* in the hierarchical case, because such separation seems substantively
sensible, that we do not allow in the random-coefficient case. In either
case, the familiar class of robust estimators and/or reasonably familiar
versions of feasible generalized least squares (FGLS) will redress OLS
problems sufficiently in a relatively straightforward manner.

Recall that White’s heteroskedastic-consistent estimator, for example,
is

n1 
V(�̂) � n(X�X)�1S0(X�X)�1 where S0 � �e2

i xix�in i�1

¨
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As Greene (2003) writes, White’s estimator “implies that, without ac-
tually specifying the type of heteroskedasticity, we can still make appro-
priate inferences based on the results of least squares” (199). More pre-
cisely, White’s estimator produces consistent estimates of the coefficient
estimates’ variance-covariance matrix in the presence of pure hetero -
skedasticity (nonconstant variance) whose pattern is somehow related to
a pattern in xx�, that is, to some pattern in the regressors, the regressors
squared, or the cross-products of the regressors. Thus, in our pure ran-
dom-coefficient case, White’s estimator provides consistency (“robust-
ness”) to precisely the heteroskedasticity issue raised because the pattern
of nonconstant variance depends on the regressors x and z and het-
eroskedasticity is the only issue raised. In the hierarchical-model case, we
might additionally have concerns about a correlation among residuals
due to the common components, �1j , in the errors of all individuals in
context j. The pattern of this induced correlation will likewise relate to
the regressors x and z (and their products and cross-products). In this
case, a Huber-White heteroskedasticity-and-clustering-consistent vari-
ance-covariance estimator will produce the appropriately “robust” stan-
dard errors.19

Such “robust” standard-error estimators leave the inefficient coeffi-
cient estimates unchanged and are not efficient in their estimates of coef-
ficient-estimate variance-covariance either. To redress these issues, feasible
weighted least squares (FWLS) may be appropriate for the pure het-
eroskedasticity induced by simple random effects, and FGLS may be ap-
propriate for the heteroskedasticity and correlation induced by the clus-
tering likely in the hierarchical context. Specifically, since the patterns of
heteroskedasticity or correlated errors producing the concerns are a
simple function of the regressors involved in the interactions, one can con-
duct FWLS if appropriate and desired following these steps: (1) estimate
by OLS; (2) save the OLS residuals; (3) square the OLS residuals; (4)
regress the squared residuals on the offending regressors (x and z here);
(5) save the predicted values of this auxiliary regression. The researchers
would then (6) use the inverse of the square roots of these predicted values
as weights for the FWLS reestimation. One may wish instead to regress
the log of the squared OLS residuals on the offending regressors and save
the exponential of these fitted values in step (5) to avoid estimating nega-
tive variances and then attempting to invert their square roots in step (6).
The procedure for implementing FGLS if appropriate and desired is simi-
lar, except that both variance and covariance parameters are to be esti-
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19. Again, Franzese (2005) discusses this matter further.



mated in steps (3) and (4) for insertion into the V(�̂) whose “square root
inverse” is to provide the weighting matrix in step (6).20

As evidence in support of the claim that some form of a robust-clus -
ter estimate will suffice in the hierarchical model with random coeffi-
cients case, we conducted several Monte Carlo experiments applying
OLS, OLS with heteroskedasticity-consistent standard-error estimation,
OLS with heteroskedasticity-and-cluster-consistent standard-error esti-
mation, and random-effect-model estimation.21 In all cases, the data
were actually generated using hierarchical-model structures (with several
alternative relative variances and covariances of the error components
and the right-hand-side variables) and in samples with fifty j units and
one hundred observations per unit (to correspond to a rather small sur-
vey conducted in each of the fifty U.S. states). All four estimation tech-
niques yielded unbiased coefficient estimates, but the standard-error es-
timates, not surprisingly, were wrong with OLS and with robust
standard-error estimates that ignore within-level autocorrelation (i.e., es-
timators consistent to heteroskedasticity only) but were nearly as good
with the robust-cluster-estimation strategy as with the full random-
 effects model (the estimates were within 5 percent of each other). Ap -
preciable efficiency gains in coefficient estimates from the hierarchical
models relative to the OLS models were also notably absent. Accord-
ingly, the main conclusion of our exercise was that one seemed generally
to have little to gain—in linear models in samples of these dimensions
anyway—from complicated random-coefficients and hierarchical-model-
ing strategies. OLS with robust variance-covariance estimator strategies
(e.g., in STATA, one simply appends “, robust” or “, robust cluster” to
the end of the estimation command) seemed generally to suffice. Of
course, we would demand much further simulation, across wider and
more systematically varying model types and ranges of parameters and
sample dimensions, to support this conclusion more wholeheartedly as a
general one. In this sample dimension and model context at least, how-
ever, simpler strategies work almost indistinguishably from the more

¨
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20. The “square-root inverse” of a matrix with nonzero off-diagonal elements is not
a simple inversion of the square root of each of the elements, as it is in the FWLS case
where V(�) is diagonal. However, most statistical software packages will find the square-
root inverse of a matrix, and so we need not detain the reader with these computations.

One could also iterate the FWLS or FGLS procedures, and common practice is to do
so, even though, statistically, the iterated and one-shot strategies have identical properties.

21. The variance-covariance matrix for coefficients estimated with the particular ro-
bust cluster we implemented (using STATA) is V(�̂) � (X�X)�1SJ(X�X)�1 where SJ �

� J
j�1uj�uj and where uj � �nj

i�1eijxij. We estimated the random effects model using hierarchi-
cal linear model (HLM) software. 

¨



complex ones, and so we are happy to argue for simplicity in cases like
this at any rate. We also note, however, that the properties of these “ro-
bust” standard-error estimators deteriorate in smaller samples. For the
simple heteroskedasticity-consistent estimator, this seems to occur only
in very small samples beginning around N � 35. For robust-cluster esti-
mators, two sample-size dimensions are key: total, N, and J, the number
of “contexts.” Again, very small J, say, below about thirty, and/or N be-
come increasingly problematic.22
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22. These sample sizes and dimensions come from consideration of the small-sample
adjustments some statisticians have recommended to these robust estimators, multiplying
White’s by a term involving N/(N � 1) and robust cluster by a term involving [N/(N �

1)][J/( J � 1)]. Franzese (2005) discusses these considerations in far greater depth. See also
Achen (2005), who correctly stresses the possible reliance upon linearity for many of these
results and conclusions.


