THE MEANING, USE, AND ABUSE
OF SOME COMMON
GENERAL-PRACTICE RULES

I Iaving discussed formulation of interactive hypotheses, and inter-
pretation and presentation of effects, we turn now to clarify some
general-practice rules often applied in the social sciences.

Colinearity and Mean-Centering the Components
of Interaction Terms

One common concern regarding the estimation of interactive models is
the (multi)colinearity, or high correlation, among independent variables
induced by multiplying regressors together to create additional regres-
sors. Colinearity, as social scientists well know, induces large standard er-
rors, reflecting our low confidence in the individual coefficients estimated
on these highly correlated factors. What is sometimes forgotten is that
these large standard errors are correctly large; the effect of x controlling
for other terms (i.e., holding them constant) is hard to determine with
much certainty if x and other terms correlate highly. These large stan-
dard errors accurately reflect our high degree of uncertainty in these con-
ditions. These perhaps unfortunate, but very real, facts regarding co-
linearity led Althauser (1971), for example, to argue against the use of
interactive terms at all. However, to omit interactions simply because
including them invites a greater degree of uncertainty in parameter esti-
mates is to misspecify intentionally our theoretical propositions. This
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assures at least inefficiency but most likely induces bias due to standard
omitted-variable-bias considerations: namely, if the omitted factor, xz,
(partially) correlates with the included factor, x, and (partially) correlates
with the dependent variable, y, then bias results. The sign and magnitude
of the bias are given by the product of these two partial coefficients.

Scholars therefore struggled valiantly for some technical artifice to re-
duce interaction-induced colinearity. However, the problem of colinear-
ity is “too little information.” As such, the only routes around the prob-
lem available to researchers are to ask the data questions that require less
information (e.g., only first-order questions, like those in table 10 or
table 12) or to obtain more information by drawing new data (preferably
less correlated, but more data will help regardless) or by relying more
heavily upon the theoretical arguments/assumptions to specify models
that ask more precise questions of the data than do generic linear-inter-
active models (e.g., Franzese 1999, 2002, 2003a).

Scholars have instead devoted inordinate attention to illusory co-
linearity “cures.” The most commonly prescribed “cure” is to “center” the
variables (i.e., subtract their sample means or “mean-deviate” them) that
comprise the interactive terms. Smith and Sasaki (1979) offered center-
ing as a technique that would improve substantive interpretation of the
individual coefficients, and we agree that it might facilitate interpreta-
tion in some substantive contexts. Tate (1984) argued that, although
centering should not change the substantive effects (actually, it will not:
see the discussion that follows), it “may improve conditioning through
reduction of colinearity” (253). Others, including Morris, Sherman, and
Mansfield (1986) and Dunlap and Kemery (1987), recommend centering
less circumspectly. The centering technique of Cronbach (1987) has at-
tained considerable acceptance in social science, perhaps due to the pro-
motion of it by Jaccard, Turrisi, and Wan (1990). Unfortunately, Cron-
bach’s clarification on the extremely limited value of centering seems less
widely known.

To be sure, the centering procedure of Cronbach (1987) is harmless;
however, it also offers no help against the “too little information™ prob-
lem of colinearity, if understood correctly. Our concern is that centering
seems widely misunderstood and misinterpreted. Some existing scholarly
research claims, wrongly, that centering helps evade colinearity in some
manner that actually produces more certain effect estimates. Centering
adds no new information of any sort to the empirical estimation, and so
it cannot possibly produce more precise estimates. Centering merely
changes the substantive question to which the coefficients and #-tests of
those coefficients refer.
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Consider this standard linear-interactive model:

y:BO+Bxx+BzZ+:8xzxz+8 (31)

Cronbach (1987) suggested subtracting the sample means from each of
the independent variables involved in the interaction and multiplying the
resulting demeaned variables together for the interaction term. The
mean-centered model, then (using 7y to represent coefficient values re-
sulting from use of the centered data), is as follows:

Y= Yoo F Ve F Y 25 F Yppxt + e (32)

wherex* =x — %X and z* =z-2Z.

Cronbach (1987) argued that rescaling the variables thusly could in-
sure against computational errors—that is, errors that are literally com-
putational: deriving from inescapable rounding errors in translating
from computer binary to human base-ten—that severe colinearity might
induce.! Cronbach (1987) also noted that centered and noncentered
models “are logically interchangeable, and under most circumstances it
makes no difference which is used” (415). Given the many thousands of
times computing precision has increased since Cronbach’s writing, the
computational concern has no current practical relevance in social sci-
ence, and so it now makes no difference under any circumstances.

Because centering does not affect the substance of any empirical esti-
mation in any way, because it will not affect the computational algo-

rithms of any modern statistical software, and because it is so widely
misunderstood in the field, we join Friedrich (1982), Southwood (1978),

1. The computational issue here involves matrix inversion, namely, the (X'X)"! in
OLS formulas for coefficient and standard-error estimates, some of whose columns (i.e., in-
dependent variables) may correlate nearly perfectly. If columns of X correlate perfectly, the
determinant of (X'X), which appears in the denominator of the formula for (X'X)"1, is
zero. Division by zero is, of course, impossible; therefore, obtaining distinct coefficient es-
timates (and thus standard errors) when (some) columns of X correlate perfectly is impos-
sible. All modern regression software warns of perfect colinearity when it obtains a zero
determinant before allowing the computer to crash trying to divide by zero. Most warn of
near-perfect colinearity well short of obtaining identically zero for that critical determinant,
that is, well short of perfect colinearity, because the translation from the base-ten data ma-
trix to the binary of computers involves rounding error. When something near zero appears
in a denominator and contains slight rounding error, the final answer could exhibit mas-
sive error. This is the concern that Cronbach raised. The multiplicative terms in interactive
regressions, he feared, could be near enough to perfect colinearity to cause severe binary-
to-base-ten rounding-error problems. However, since his writing, computers have become
many thousands of times more exact in their binary calculations’ approximation to base
ten, meaning that even this computational concern is no longer present in any practical so-
cial-science context.
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and others in strongly advising the abandonment of the practice or, at
least, far greater care in interpreting and presenting the results following
its implementation. To clarify what centering does to the numeric and
substantive estimates of an interactive analysis, which is something and
nothing, respectively, consider again our basic linear-interaction model
and its centered version, which appear in equations (31) and (32), re-
spectively. Starting from equation (32), and substituting terms, we see
that

Y= Yor T Ve (6 = X) F ¥ (27 2) + Yy (x — X)(z —2) €T (33)
Y = Yor T VarX — YirX T YR = VR T Ve p XX T Vi pXZ T YyrprXT
+ Y XZ + 8%

y = (70‘:' - ’yx"'QE - ’yZ’*z + ’Yx'“‘z“'x_z) + <Yx"’ - ’Yx’*z*z)x + (’)/z"r - ’Yx“'z‘*f>z
+ Yrpxz + €F (34)

Comparing the centered equation in (34) with the original model in
(31) highlights the exact correspondence of results between the centered
and uncentered regression models:

Bo = Yor = VX T V% T YyrprXZ
Be = Yo = Yar®

L

Bxz = Vrer

Collecting terms, we see that the first parenthetical expression in
equation (34) contains its set of constant terms and thus equals the in-
tercept, By, from (31). The second parenthetical expression in (34) is its
ultimate coefficient on x, which is equal to B, from (31), and the third
parenthetical expression is the ultimate coefficient on z in (34), which
equals B, in (31). The fourth term is the coefficient on xz in each model.
Trivially, since the right-hand-side models are mathematically inter-
changeable, the estimated residuals and therefore the estimated residual
variance from the centered and uncentered models are also identical.

As we explained previously, researchers’ common troubles arise when
they confuse coefficients with effects. We know, for example, that the
marginal effect of x on y in equation (31) would be dylox = B, + B,z
The marginal effect of x* on y given equation (32) would be dy/ox* =
Vir T Vyr 22 SINCE By = Yyr — Yyrp#Z, WE CAN EXPIESS Vyx = By T YyrpeZ.
Therefore
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ayox* = By + YerprZ + Ypr o2

Then, given that z* = z — z, we have

BYIOX* = By + Yy + YerpZ — Ve E = Be F Ve
Finally, since B,, = 7¥,+,+, we conclude

aylox™ = B, + B,z = dylox

Stated directly, the point is obvious: the effect of a marginal increase
in the centered version of x is identical to the effect of a marginal in-
crease in uncentered x. The same identity applies to the effects of z, of
course. We reiterate: centering does not change the estimated effects of
any variables.

Further, the estimated variance-covariances (i.e., standard errors, etc.)
of those effects are also identical. Thus, the estimated statistical certainty
of the estimated effects is also unchanged by centering. For the uncen-
tered data, V(ay/0x) = V(B,) + 22V(B,,) + 22C(B,,B.,). Using the mean-
centered model:

V(ylox*) = V(§) + (2*PV(Fuopr) + 22* ClFo Vo)
Substituting 9, = B, + Fyo+Z and Fye = B
V(aylax*) = V(B + B2) + (2%)* V(B,) + 22*C(B, + B3 Be)
Vigylox*) = V(B,) + 22 V(B,) + 22C(B,,B..) + () V(B..)
+22*C(B, + BrZBre)
Rearranging terms and substituting z* = z — Z:
V(aylox*) = V(B,) + z2V(B,,) + 2ZC(B,,B..)
+ (2 = 2PV(B.) + 2(z — AC(B,B.) + 2(z — 2)ZV(B.)
V(aglax*) = V(B,) + 22V(B,) + 22C(B,,Bc.) = V(@aj/ox)

The variances of the estimated marginal effects of the centered x and
of the uncentered x are identical. The same holds for the variances of the
estimated marginal effects of z and mean-centered z, of course. As with
the coefficients, the numeric values of the elements in the variance-
covariance matrices for the coefficients using uncentered and centered
data will naturally differ from each other, but exact correspondence in the
estimated effects and the estimated variances of effects can be derived
through algebraic manipulation of these values. As an example, recall
that B, = Y.« — Y,+,+Z. This implies that V(8,) = V(J, — Jyep22) = V()
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+ Z2V(Pyupr) — 2ZC(Pyr, Vyor). Hence, while the estimated coefficients
and variance-covariance matrices of coefficients will differ numer-
ically (i.e., B, # 7,» and V/(,é’\x) # @)), the estimated effects and the
precision of the estimated effects of the variables will be identical, re-
gardless of whether the data are centered or uncentered. Again, we warn
the reader against confusing coefficients with effects.

If all estimates of the substantive effects and all estimates of the cer-
tainty of those substantive effects are identical whether the data are mean-
deviated or left uncentered, how, one might wonder, can some key coeffi-
cient estimates, their standard errors, and the corresponding #-statistics
differ? The answer is simply that the coefficients and associated standard
errors and #-statistics do not refer to the effects at the same substantive
values of the regressors across centered and uncentered models. For ex-
ample, in our standard model, y = B, + B.x + B,z + B..xz + &, the co-
efficient B, gives the effect of a unit increase in x when z equals zero; its
standard error and the resulting #-ratio refer to the certainty of that x ef-
fect at that particular z value. In y = 5o + Y™ + 2% + Ypepsx®2*
+ &*, the coefficient v, gives the effect of a unit increase in x* (or x, since
a unit increase in x or x™ is the same thing) when z* equals zero, which
is not at all the same value as when z = 0 (assuming, of course, that Z #
0). Since z* = z — Z, the centered z* equals zero when the uncentered z
equals its mean, not when z = 0 (except in the specific case where Z = 0).
The standard error of this coefficient estimate, ¥+, and the resulting z-
ratio also refer to the certainty of the effect of a one-unit change in x at
this different z = Z value. Coefficients, standard errors, and #-statistics dif-
fer in the centered and the noncentered models because they refer to dif-
ferent substantive quantities, not because either model produces different,
much less any better, estimates of effects than does the other.

Centering can, in this manner, actually be useful for substantive in-
terpretation in some contexts. If interpreted carefully and understood
fully, centering sometimes can facilitate a more substantively grounded
discussion of the empirical analysis. If z cannot logically equal zero, then
substantive interpretation of 8, is vacuous, but examining the effect of x
when z is equal to its sample mean might be substantively revealing. If
so, researchers might advantageously center z around its mean to aid
substantive interpretation and discussion of B,. That is, centering z
around its mean allows one to interpret the coefficient on x as the effect
of x when z equals its mean rather than when z equals zero. Further, it
allows the researcher to interpret the #-statistic on 7, as the statistical sig-
nificance of x when z happens to equal its mean, which may likewise sim-
plify discussion in some contexts.
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Accordingly, our concern is that researchers too often misinterpret
the results of centering—and have come to the mistaken conclusion that
centering alters the estimates of effects or the estimated significance of
effects. We recommend that centering transformations, if applied at all,
be applied only with the aim to improve substantive presentation, not,
mistakenly, to improve (apparent) statistical precision and certainly not,
reprehensibly, to move the value of z to which the standard ¢-ratio refers
so as to maximize the number of asterisks of statistical significance on
reported #-tests. The substantive interpretation of the effects and the
certainty of those effects are completely unaffected by this algebraic
sleight-of-hand.

Including x and z when xz Appears

To estimate models containing multiplicative interaction terms, most
texts advise a hierarchical testing procedure: that is, if xz enters the
model, then x and z must also. If wxz appears, then all (six) of the lower
order combinations (x, w, z, xw, xz, wz) must appear also, and so on
analogously for higher order interactions. Allison (1979), for example,
writes, “| The] common rule . . . is that testing for interaction in multiple
regression should only be done hierarchically . . . If a rationale for this
rule is given at all, it is usually that additive relationships somehow have
priority over multiplicative relationships” (149-50). This rule is prob-
ably an advisable one, if researchers must have a rule. Certainly it is a
much safer rule than an alternative proviso that one can include or not
include components to interactions with little concern or consideration.
However, we believe that researchers must understand the logical foun-
dations of the models they estimate and the meaning and purpose of any
proffered rule, instead of merely following such rules by rote. We argue
instead for theoretically driven empirical specifications with better ap-
preciation of the assumptions underlying alternative models. While the
rule of including x and z if including xz may be a quite reasonable appli-
cation of Occam’s razor and is often practically advisable, it is neither
logically nor statistically strictly necessary.

As proof that the rule is not logically necessary, notice that one can de-
compose any variable into the product of two or more others; therefore,
strict adherence to this rule would actually entail infinite regress. As a
substantive example, note that real GDP (per capita) equals nominal GDP
times a price-index deflator (times the population inverse); conversely,
nominal GDP (per capita) is real GDP times a price index (times the pop-
ulation inverse). Nothing statistically or logically requires researchers to
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include all of these components in every model containing some subset
of them. Researchers should, instead, estimate the models their theories
suggest.

That said, several good reasons to follow the rule exist. First, given the
state of social-science theory, the models implied by theory will often be
insufficiently specified as to whether to include x and/or z in an interac-
tive model. Due scientific caution would then suggest including x and z to
allow the simpler linear-additive theory a chance. (This is Occam’s razor.)
Failing to do so would tend to yield falsely significant estimates of coeffi-
cients on xz if, in fact, x or z or both had just linear-additive effect on y.
Second, inclusion of the x and z terms in models involving xz allows a
nonzero intercept to the conditional effect lines, such as those plotted in
chapter 3. This is important because, even if the effect of x on y is truly
zero when z is zero, if this conditional relationship is nonlinear, allowing
a nonzero intercept to the linear-interactive estimates of the truly nonlin-
ear interaction (by including x and z) will enhance the accuracy of the lin-
ear approximation. Third, and perhaps most important, even when the
theory clearly excludes x and/or z from the model, that is, when it un-
equivocally establishes the effect of one (or both) variable(s) to be zero
when the other is zero, the researcher can and should test that prediction
and report the certainty with which the data support the exclusion. If that
test supports exclusion, then both theory and evidence recommend ex-
clusion of the components, and continued inclusion would be the mis-
specification of the model. For this sort of empirical exploration, only
finding a coefficient expected to be zero in fact to be estimated as (very
close to) zero and, highly preferably, with small standard error is clear ev-
idence from the data that the assumption holds. That is, clearest support
for the assumption comes from failure to reject because the estimate is
with considerable certainty near zero rather than because the estimate has
very large standard error. In sum, then, this rule, as an application of
Occam’s razor, is a safer adage than its opposite, but researchers should
still, first, understand the basis for the rule and, second, should not shy
from breaking it if their theory and the data strongly suggest doing so.

We now elaborate these points more fully and formally. If the theory
expressly excludes z from having any effect on y when x is zero—that is,
nonzero presence of x is a necessary condition for z to affect y, the cor-
rect model is

y = BO + Bxx + szxz t+e (35)

By this model, as theory demands, the effect of z on y, dy/dz, equals
B..x, which is zero when x = 0. Estimating this model assumes that x
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must be present for z to affect y but does not allow the data to adjudi-
cate the question. If z does affect y even when x is zero, equation (35)
would suffer omitted-variable bias, with coefficient estimates wrongly at-
tributing the omitted variable’s effects to the variable(s) that do enter the
model and that correlate with the omissions. In this case, the omission
will most likely imply a biased B,, estimate (primarily). Regression esti-
mation will attribute some of the true-but-omitted effect of z when x =
0 to z’s interaction with x, and so the estimate of B, will be too large
(small) when this true-but-omitted effect is positive (negative). Thus, if
the omitted effect is positive, the estimated effect of z on y (9y/0z = f,.x)
will reflect a greater conditional effect than truly exists (i.e., greater slope
to this effect line), with underestimation of the effect of z on y at low val-
ues of x and overestimation at high values of x. Conversely, the effect of
x ony (9y/ax = B, + B.z) will be estimated as more conditional upon z
than it truly is, implying too great a slope to this effect line and, likely,
also too low an intercept (B3,) to that effect line.

Rather than assume such necessity clauses by omitting key interaction
components, we suggest that researchers test them by first estimating the
model including all lower order components:

y = BO + Bxx + Bzz + szxz te (36)

An insignificant coefficient of B, here might then support the exclusion
theory and provide some justification for proceeding with the necessity
clause in place. But recall that a ¢-test on B, only refers to the effect of z
when x equals zero. The theory concludes that 3, should equal zero, and
so we would hardly want to accept that hypothesis merely because we
fail to reject it at some generous significance level like p < 0.10. Recall
that failure to reject can occur with small coefficient estimates and small
standard errors, small coefficient estimates and large standard errors, or
large coefficient estimates and larger standard errors. Only the first of
these should give the researcher great comfort that he or she may esti-
mate the model that assumes the necessity clause by omitting (an) inter-
action component(s); the second gives less support for such a restriction;
and the last gives very little or none at all.

In summary, estimating models like (36) that include all interaction
components when true models, for instance, (35), actually exclude them
will cost researchers some inefficiency if not bias. Estimating (36) when
the true model is (35) involves trying to estimate more coefficients than
necessary, which implies inflated standard errors. Moreover, these in-
cluded-but-unnecessary coefficients, 8, or B, are on variables, x or z, that
are likely highly correlated with the necessary ones, xz, which implies
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greatly inflated standard errors. Thus, the inefficiency of overcautious in-
teraction-component inclusion could easily and often be severe enough to
lead researchers to miss many interactions actually present in their sub-
ject. Especially as theory advances to grapple with the complex condi-
tionality of the subjects that social scientists study, and as empirical mod-
els attempt to follow even though data remain stubbornly scarce, such
inefficiency can very easily become unaffordable. Thus, we recommend
that researchers (a) acknowledge and discuss the assumptions/arguments
underlying the decision to omit or to include components of their inter-
action terms, (b) gauge statistically the certainty with which the data sup-
port those assumptions, and then (c) apply Occam’s razor by following
hierarchical procedures unless theory and data clearly indicate that doing
so is unnecessary and overly cautious.



