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Many statistical software packages are available to researchers. Be-
cause STATA is prominent in the social sciences, we provide STATA-

based syntax for readers to use in following our advice on interpreting and
presenting results from linear models that include interaction terms.1

We advise creating a separate data set that contains simulated values
for each of the variables in the regression analysis (it can be used for mar-
ginal effects and/or for predicted values, or separate ones can be used for
each approach). A data set of simulated values enables the researcher to
interpret effects along evenly spaced values of one or more of the vari-
ables, within a substantively useful range at which marginal effects, pre-
dicted values, and differences in predicted values can easily be inter-
preted (where the actual data set may not contain evenly spaced values).

Marginal Effects, Standard Errors, 
and Confidence Intervals

To begin, determine the number of observations that will be contained in
the simulation data set. A researcher might want to calculate the estimated
marginal effects of x as z ranges from its minimum to its maximum, at
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1. This syntax is valid for STATA version 9.



evenly spaced increments (e.g., if the variable z ranges from 1 to 10, and
the user wishes z to vary in 1-unit increments, this would imply 10 obser-
vations). We advise selecting a manageable number of values (5–100).
Open STATA and create a new data set by setting the number of observa-
tions, v (e.g., “10”), to be included:

set obs v

One could manually enter each evenly spaced value into a data set
(e.g., 1, 2, 3, etc.) using the data editor. A more efficient way of setting
values of z is easily found:

egen z = fill(min(unit)max)

This command creates a variable z that ranges from min (e.g., “1”)
to max (e.g., “10”) in unit increments (e.g., “1”). If, following our gov-
ernment-durability example, z is to range between 40 and 80 and rise by
5-unit increments, then we would need 9 observations, and we would
run the following command lines to generate values of z:

set obs 9

egen z = fill(40(5)80)

Then, save the data set:

save dydxdata.dta

After you have created a data set that allows for a range of z values,
return to the empirical data:

use realdata.dta

To estimate the following “standard model,” given variables y, x, z
and other covariates, w, in the data set:

y � �0 � �xx � �zz � �xzxz � �ww � �

Generate the multiplicative term, xz:

gen xz = x*z

Estimate the linear-regression model:

regress y x z xz w

Recall that the marginal effects of x and z on y are �ŷ/�x � �̂x � �̂xzz and
�ŷ/�z � �̂z � �̂xzx.

Marginal effects are calculated by adding the estimated �̂x to the
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product of each value of z with the estimated coefficient �̂xz. Open the
simulation data set to calculate marginal effects:

use dydxdata.dta, clear

This command will call up the simulation data set and clear the em-
pirical data set. The OLS estimates will remain in memory (although typ-
ing “clear” on its own will remove the estimates from memory).

One could take the estimated coefficients from the regression output
and create a new variable:

gen dydx = �̂x + z* �̂xz

where the estimated value �̂x from the regression output (e.g., “-2”) is
entered instead of “�̂x” and the estimated value of �̂xz from the regres-
sion output (e.g., “10”) is entered in place of “�̂xz .” This command line
would thus create v values corresponding with the marginal effects of x
at various values of z. A disadvantage to this procedure is that it is pos-
sible to mistype the estimated values, creating grave errors in the calcu-
lated effects. A less error-prone way of calculating the marginal effects,
then, is to use the estimates STATA stores in memory.

STATA stores the estimated coefficient �̂x in memory as _b[x] and the
coefficient �̂xz in memory as _b[xz], and so a variable that consists of the
marginal effects of x as z varies across the evenly incrementing values of
z is generated as follows:

gen dydx=_b[x]+_b[xz]*z                       

Using the variable dydx, a table or plot of selected marginal effects for
evenly spaced values of interest is now easily created.2

Presentations of marginal effects should also include an indication of
our level of certainty or uncertainty regarding these marginal effects. Re-
call that the estimated variance of the marginal effects in this example

would be V(�ŷ/�x) � V(�̂x) � z2V(�̂xz) � 2zC(�̂x ,�̂xz). Calculating

V(�ŷ/�x) is straightforward from there. The estimated variance-covari-

¨ ¨ ¨ ¨ ¨
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2. Users can also take advantage of STATA’s programmed postestimation commands.
The command lincom will report estimates, standard errors, t-statistics, p-levels, and a 95
percent confidence interval for any linear combination of coefficients. So, lincom can be
used to calculated marginal effects at selected values of z: lincom x zvalue*xz will calculate
�̂x � �̂xzz at the z-value entered into the command line. For a handful of marginal effects,
lincom is a useful shortcut; the disadvantage is that the z-values must be entered one at a
time. If more than a handful of effects are desired (or if graphing is desired), then the pro-
cedure outlined in the text will be more serviceable. Alternatively, lincom can be written
into a looping program and the results stored in a data set that will allow graphing. Ap-
pendix B contains this programming syntax.



ance matrix of estimated coefficients is retrieved in STATA by typing
“vce” after an estimation command. The user could then simply gener-

ate a new variable by taking the specific values of V(�̂x), V(�̂xz), and

C(�̂x ,�̂xz) acquired from viewing the values in the variance-covariance
matrix.

gen vardydx = V(�̂x)+z*z*V(�̂xz)+2*z*C(�̂x ,�̂xz)

where V(�̂x), V(�̂xz), and C(�̂x ,�̂xz), would be replaced by their estimated
values (e.g., “2”).

Again, although this “enter by hand” method is transparent, human
error in data entry could be a problem. A less error-prone method uses

the estimates that STATA stores in memory. The square root of V(�̂x)

is in “_se[x],” and the square root of V(�̂xz) is in “_se[xz].” The value

C(�̂x ,�̂xz) is stored as the element in the row and column corresponding
to x and xz in the estimated variance-covariance matrix of the coefficient
estimates, vce. In this particular case, given the order of the variables in
the estimated equation, it is in the third row, first column (and, because
the variance-covariance matrix is symmetric, also in the first row, third
column).

Create a matrix V to represent the variance-covariance matrix of the
coefficient estimates, VCE.

matrix V = get(VCE)

Generate a variable C_x_xz, which contains the covariance of interest,
extracted from its position in the matrix V.

gen C_x_xz = V[3,1]

The estimated variance (and standard error) of each estimated mar-
ginal effect can thus be calculated as

gen vardydx=(_se[x]ˆ2)+(z*z)*(_se[xz]ˆ2)+2*z*C_x_xz

gen sedydx=sqrt(vardydx)

A table of marginal effects with accompanying standard errors could
be generated as follows:

tabdisp z, cellvar(dydx sedydx)

This command line would present a table featuring all v values of z,
with the appropriate marginal effect and standard error of the marginal ef-
fect. This table is likely to be useful for the researcher for interpretation,

¨ ¨ ¨

¨ ¨ ¨¨ ¨ ¨

¨ ¨ ¨
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but for presentational purposes, only a set of selected values of z might be
incorporated into an abbreviated table.

Alternatively, marginal effects can be graphed. Recall that confidence
intervals can be generated with the following formula: �ŷ/�x � tdf,p


��V(�ŷ/�x) . STATA stores the degrees of freedom from the previous esti-
mation as “e(df_r),” and the researcher can use the inverse t-distribution
function to create tdf,p . For a 95 percent confidence interval, the lower
and upper bounds are calculated as

gen LBdydx=dydx-invttail(e(df_r),.025)*sedydx

gen UBdydx=dydx+invttail(e(df_r),.025)*sedydx

This command graphs estimated marginal effects with confidence in-
tervals, along values of z:

twoway connected dydx LBdydx UBdydx z

These procedures are summarized in table B1.

¨
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TABLE B1. STATA Commands for Calculating Marginal Effects of x on y, Standard Errors
of Those Effects, and Confidence Intervals around Those Effects

Procedures Command Syntax

Create simulation data set: v evenly set obs v
spaced values for z from its minimum egen z � fill(min(unit)max)
to its maximum. Save the data set. save dydxdata.dta

Open the original data, generate the mul- use realdata.dta
tiplicative term, and estimate the gen xz � x*z
linear-regression model. regress y x z xz w

Open the simulation data set and calcu- use dydxdata.dta, clear
late the estimated marginal effect. gen dydx��b [x] � �b [xz] *z

Create a matrix from the estimated co- matrix V � get (VCE)
variance matrix of the coefficient esti- gen C�x�xz�V [3,1]
mates, pull out the stored element
C( �̂x, �̂xz), and create a variable con-
taining it.

Calculate the estimated variance (and gen vardydx�(�se[x] ˆ2)� (z*z) * (�se[xz] ˆ2)
standard error) of each estimated mar- �2*z*C�x�xz
ginal effect. gen sedydx�sqrt (vardydx)

Generate a table displaying estimated tabdisp z, cellvar(dydx sedydx)
marginal effects and standard errors
for all v values of z.

Generate lower and upper confidence- gen LBdydx�dydx-invttail (e(df�r),.025)*sedydx
interval bounds. gen UBdydx�dydx�invttail(e(df�r),.025)*sedydx

Graph the estimated marginal effects and twoway connected dydx LBdydx UBdydx z
the upper and lower confidence inter-
vals along values of z.
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Differences in predicted values can be generated by multiplying the
marginal effects calculated previously by �x (recall that �y � �x(�̂x �

�̂xzz0) so long as x enters linearly into the interaction). The estimated
variance of these differences in predicted values, similarly, is calculated
by multiplying the estimated variance of the estimated marginal effect by
�x2. For example:

gen diffyhat = a*(dydx)

gen vardiffyhat = (aˆ2)*vardydx

where a is �x, (e.g., “2”).

Predicted Values, Standard Errors, 
and Confidence Intervals

Predicted values, ŷ, are generated by summing the products of the right-
hand-side variables, set at particular values, and their corresponding co-
efficients: ŷ � Mh�̂, where Mh is a matrix of values at which x, z, and
any other variables in the model are set.

We advise creating a simulation data set that contains the values at
which x, z, and any other variables in the model are to be set. Begin by
determining the number of observations that will be contained in the
data set. A researcher might want to calculate the estimated predicted
values as z ranges from its minimum to its maximum, at evenly spaced
increments (e.g., if the variable z ranges from 1 to 10, and the user wishes
z to vary in 1-unit increments, this would imply 10 observations). We
 advise selecting a manageable number of values (5–100). Open STATA
and create a new data set by setting the number of observations, v, to be
included:

set obs v

One could manually enter each evenly spaced value into a data set
(e.g., 1, 2, 3, etc.) using the data editor. A more efficient way of setting
values of z is easily found:

egen z = fill(min(unit)max)

This command creates a variable z that ranges from min (e.g., “1”)
to max (e.g., “10”) in unit increments (e.g., “1”). Set the other variables
at the desired level, for example, the means, or modes, or substantively
interesting values, using the generate command. To generate predicted
probabilities based on a model that contains k regressors (including the



constant), k total variables must be created. In this example, we create
variable x that takes the value c1 (e.g., “10”), variable w that takes the
value c2 (e.g., “-2”), and variable col1 that takes the value of 1 (later to
be multiplied by the intercept).

gen x=c1

gen w=c2

gen col1=1

Note that each of these variables in the data set will be set at a con-
stant value: the only variable that will vary is z; all other variables (aside
from the interaction term) are held constant.3 Create the interaction term
that reflects the values to which x and z are held and save the data set.

gen xz=x*z

save yhatdata.dta

Open the real data set:

use realdata.dta

To estimate the following “standard model,” given variables y, x, and
z in the data set.

y � �0 � �xx � �zz � �xzxz � �

Generate the multiplicative term, xz:

gen xz � x*z

Estimate the linear-regression model:

regress y x z xz w

Open the simulation data set:

use yhatdata.dta, clear

This command will call up the simulation data set and clear the em-
pirical data set. The OLS estimates will remain in memory (although typ-
ing “clear” on its own will remove the estimates from memory).
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3. To generate several blocks of set values that allow z to range from its minimum to
its maximum, but also allow x to take on different values, the user could take advantage
of the expand command.  Generate the first block of values following the preceding in -
structions and setting x to xa. Then expand the data set by two: expand 2. This command
line will create a block of v additional observations that will exactly match the first. Then
replace the value of x in the new block of observations: replace x=newvalue in (v+1)/2v
(e.g., replace x = 4 in 11/20).



Assemble the variables into a matrix:4

mkmat x z xz w col1, matrix(Mh)

This command creates matrix Mh, which contains the specified val -
ues at which our variables are set: x is fixed at the value c1; z varies at
regular intervals between some minimum and maximum; the xz corre-
spondingly varies, as it is the product of x (which is held at c1) and z
(which varies). The covariate w is fixed at c2.

Recall that ŷ � Mh�̂. Although �̂ is a column vector of coefficients,
STATA stores the estimated coefficients as a 1 � k row vector, e(b). So
we want to create B, a column vector with k � 1 dimensions, that takes
the stored coefficients and transposes them into �̂:

matrix B=e(b)'

Calculating the predicted values is simply a matter of multiplying Mh
by B:

matrix yhat=Mh*B

Then convert the resulting column vector into a variable, yhat:

svmat yhat, name(yhat)

Recall that V(ŷ) � Mh V[�̂]Mh�. STATA stores the estimated variance-

covariance matrix of the estimated coefficients, V[�̂], as VCE in its mem-

ory. We create a matrix v consisting of V[�̂]:

matrix V=get(VCE)

We can now calculate the variance of the predicted values as follows:

matrix VCEYH=Mh*V*Mh'

This command creates a matrix, VCEYH, that contains the variances
and covariances of the predicted values. The diagonal elements in the
variance-covariance matrix of predicted values are those of interest to us,
as they correspond with the estimated variance of the predicted values.
We want to extract these diagonal elements into a vector:

¨

¨

¨ ¨
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4. A shortcut is provided by the predict command. Estimate the regression on the orig-
inal data, open the simulated data, and enter predict yhat (bypassing creation of Mh). The
predict command line generates predicted values using the stored regression coefficients
and the values of the variables in the current data set. As long as the variables in the sim-
ulation data set have the same name as the variables in the original data set, the predict
command line will produce the desired results. Entering predict seyhat, stdp will generate
standard errors around the predicted values. 



matrix VYH= (vecdiag(VCEYH))'

The vecdiag command creates a row vector from the diagonal ele-
ments of the variance-covariance matrix of the predicted values. Because
we want a column vector rather than a row vector, a transpose appears
at the end of the command.

We then create a new variable, vyhat, which contains a unique esti-
mated variance to correspond with each predicted value yhat:

svmat VYH, name(vyhat)

Taking the square root produces the estimated standard error of each
predicted value yhat:

gen seyhat = sqrt(vyhat)

The researcher can next present a table of predicted values with cor-
responding standard errors:

tabdisp z, cellvar(yhat seyhat)

Predicted values are effectively displayed when graphed with confi-
dence intervals. The confidence intervals around predicted values ŷ can

be constructed as ŷ � tdf,p 
�V(ŷ), where ŷ corresponds with the values

in yhat, 
�V(ŷ) corresponds with the values in seyhat, and tdf,p refers to
the relevant critical value from the t-distribution. STATA stores the de-
grees of freedom from the previous estimation as “e(df_r),” and the re-
searcher can utilize the inverse t-distribution function to create the mul-
tiplier tdf,p.

For a 95 percent confidence interval, the lower and upper bounds are
calculated as follows:

gen LByhat=yhat-invttail(e(df_r),.025)*seyhat

gen UByhat=yhat+invttail(e df_r),.025)*seyhat

The predicted values and confidence intervals can be graphed along
values of z as follows:

twoway connected yhat LByhat UByhat z

These procedures are summarized in table B2.

¨

¨
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TABLE B2. STATA Commands for Calculating Predicted Values of y, Standard Errors
for Those Predicted Values, and Confidence Intervals around Those Predicted Values

Procedures Command Syntax

Create simulation data set that con- set obs v
tains k total variables. Begin with egen z � fill(min(unit)max)
v evenly spaced values for z from gen x � c1
its minimum to its maximum. gen w � c2
Create variables that set the re- gen col1 � 1
maining covariates at meaningful gen xz � xz
values, including a column of 1s save yhatdata.dta
for the intercept. Create the inter-
action term. Save the data set.

Open the original data, generate use realdata.dta
the multiplicative term, and esti- gen xz � x*z
mate the linear-regression model. regress y x z xz w

Open the simulation data set and as- use yhatdata.dta, clear
semble the matrix of set values. mkmat x z xz w col1, matrix(Mh)

Create a column vector containing matrix B�e(b)’
the coefficient estimates.

Create a column vector of predicted matrix Yhat�Mh*B
values.

Convert the column vector into a svmat Yhat, name(yhat)
variable.

Create a matrix from the estimated matrix V � get(VCE)
covariance matrix of the coeffi-
cient estimates.

Calculate the variance of the pre- matrix VCEYH�Mh*V*Mh’
dicted values.

Extract the diagonal elements of matrix VYH�(vecdiag(VCEYH))’
the variance-covariance matrix of
predicted values into a column
vector.

Convert the column vector into a svmat VYH, name(vyhat)
variable.

Calculate the estimated standard gen seyhat � sqrt(vyhat)
error of each predicted value.

Present a table of predicted values tabdisp z, cellvar(yhat seyhat)
with corresponding standard
errors.

Generate lower and upper gen LByhat�yhat-invttail(e(df�r),.025)*seyhat
confidence-interval bounds. gen UByhat�yhat�invttail(e(df�r),.025)*seyhat

Graph the predicted values and the twoway connected yhat LByhat UByhat z
upper and lower confidence inter-
vals along values of z.



Marginal Effects, Using “lincom”

The STATA command “lincom” provides a shortcut for calculating mar-
ginal effects and their estimated standard errors. It calculates a linear
combination of estimators following regression. The disadvantage to
“lincom” is that it can be cumbersome to use when the user desires to
calculate marginal effects across several values. Here, we provide a loop-
ing command that applies lincom across a range of values. In the ex-
ample, the marginal effects of x are calculated across values of z (for clar-
ity, denoted as zvalues), as z takes values between 0 and 6. The
programming loop will post four types of results to a data set called lin-
comresults.dta: the marginal effect estimates from lincom, the associated
standard errors, the value of zvalues applied, and the degrees of freedom
in the model (this will be constant throughout, but it helps to have
STATA collect it).

program define lincomrange
version 9
tempname dydx
postfile ‘dydx’ dydx sedydx zvalues df using lincomresults, replace
quietly {

forvalues z = 0/6 { 
drop _all
use realdata.dta
reg y x z xz w
lincom x + ‘zvalues’*xz
post ‘dydx’ (r(estimate)) (r(se)) (‘zvalues’) (e(df_r))

}
}

postclose ‘dydx’
end
lincomrange
use lincomresults, clear
tabdisp zvalues, c(dydx sedydx)
gen LBdydx = dydx-invttail (df,.025)*sedydx
gen UBdydx = dydx+invtttail (df,.025)*sedydx
twoway connected dydx LBdydx UBdydx zvalues
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