APPENDIX D

Questions of Statistical Analysis and
Discrete Choice Models

In discrete choice models, the dependent variable assumes categorical
values. The models are binary if the dependent variable assumes only
two values. Framing deterrence outcomes, for example, in terms of
success and failure provides a typical case. In this situation, a simple
binomial logit or probit model is required for estimations. Most stud-
ies of international conflict use this simple approach by examining
whether war is likely to occur or not, or whether international disputes
are likely to escalate or not, and so forth. The examples are too numer-
ous to cite them all. In this book, too, tables 5.3 and 7.1 present the
models of the onset of extended-immediate deterrence, where the
dependent variable was coded one (1) if general deterrence failure led
to the rise of extended-immediate deterrence crisis, and zero (0) if it did
not. For this reason, binomial logit models were the appropriate
method for estimations.

If the outcome of deterrence is diversified to include multiple pos-
sibilities, as it is in this book (i.e., either side’s acquiescence, compro-
mise, or war), then the polychotomous nature of the dependent vari-
able requires more complex models for estimation. Since foreign policy
choices often involve more than two options or outcomes, the poly-
chotomous dependent variable should be an obvious choice for a num-
ber of studies. Still, we rarely find it utilized in the international rela-
tions literature partly due to the fact that the discrete choice models are
still in the developing stage. Nevertheless, econometric research has
progressed in the last two decades to give us several options when
deciding on what models to use if our dependent variable takes on
more than two discrete values.! In this appendix, I provide a brief sur-
vey of such models to facilitate a better understanding of the model
estimations used in the book. The survey may also help clarify some
methodological issues involved in modeling decisions, which could be
useful for discrete choice models in future works.
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Ordered Probit. Multinomial logit is the method of choice for this
book since the outcome of deterrence is a polychotomous discrete vari-
able comprising four possible categories (AcqDef, AcqCh, Compro-
mise, War). If these choice categories are assumed to be ordinal out-
comes, ranking from low to high according to some of their
dimensions, then ordered probit or logit would be a convenient
method. Ordered probit is the most frequently used method in interna-
tional conflict studies when the dependent variable is easily measured
on an ordinal scale. For example, an analysis of conflict escalation
from low intensity to high intensity requires an ordinal probit or logit
analysis (e.g., Rousseau et al. 1996). If we measure deterrence out-
comes in a somewhat simplified manner, such as that utilized by Huth
and Russett (1988) with their distinction between success, stalemate,
and failure, the easily discernible ordinal scale for the outcomes would
also warrant the use of ordered probit.

For this analysis, however, it is difficult to rank the four outcomes
according to a single criterion. As an illustration, if the degree of a dis-
putant’s resolve, the Challenger’s for example, is selected as the mea-
sure for ordering the outcomes, then the ordered values that range
from low (0) to high (3) reflect increasing levels of Challenger’s resolve.
It is fairly easy to group AcqCh and Compromise at the lower end of
such a scale as both outcomes indicate a less resolved Challenger,
though compromise clearly indicates a relatively stronger resolve.
However, the rank order between AcqDef and War can be disputed
since it is a function of both the Challenger’s and the Defender’s
resolve. A highly resolute Challenger can face an equally resolute
Defender, in which case War is assigned the highest ordinal value (i.e.,
AcqCh = 0, Compromise = 1, AcqDef = 2, War = 3). On the other
hand, a highly resolute Challenger can face a less resolved Defender, in
which case AcqDef is assigned the highest ordinal value (i.e., AcqCh =
0, Compromise = 1, War = 2, AcqDef = 3). As this example shows,
assigning an order to the dependent variable has theoretical as well as
methodological implications.

For exploratory purposes, I ran ordered probit estimations based
on both ordinal scales for all models in each chapter. The results
showed a significant sensitivity to different orderings of outcomes.
This suggests that the empirical results should be interpreted as a func-
tion of both the explanatory variables and the particular ordinal mea-
sures used for the dependent variable. Namely, if the ordered probit
test shows statistical significance for the rank ordering of choice cate-
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gories, interpretation of the independent variables is also conditional
upon the assumptions implicit in the rank ordering of the dependent
variable.2 For this reason, the choice of one ordinal scale over another
when measuring the same dependent variable across different theoret-
ical models needs to be theoretically justified. In the models used in this
book, there is no theoretical rationale for a particular ordering of the
deterrence outcomes.

It is clear, therefore, that ordered probit analysis is not the optimal
choice for the analysis here. The theoretical argument in this book
focuses only on the independent effects of explanatory variables on
deterrence, not assuming any intrinsic ordered nature of deterrence
outcomes. If only one explanatory model had been used, which also
implied the assumptions about the ordered nature of outcomes, the use
of ordered probit would not be questionable. This book explores mul-
tiple explanatory frameworks across different chapters, which do not
imply any issue related to the ordered nature of deterrence outcomes.
Therefore, only the modeling options that treat deterrence outcomes as
unordered discrete categories (i.e., nominal variables) would be appro-
priate. In this respect, there are several estimation options, and multin-
omial logit (MNL) was deemed to be the most appropriate choice.
After presenting the MNL model, I will discuss the basis for its selec-
tion over other alternative models for unordered discrete choices.

Multinomial Logit. In a multinomial logit estimation, the coefficients
indicate the predicted marginal effects of each explanatory variable (x,)
on the log-odds ratio between two outcomes in each possible pair of
deterrence outcomes. The log-odds ratio is computed as follows:

Prob( y =)
Prob(y = 0)

]ka

This expression means that the MNL coefficients indicate the effects
of an explanatory variable (x;) on the log-odds ratio of the probabili-
ties of choosing alternative J relative to the baseline alternative (out-
come) K.

Note that the MNL model estimates the effects of the independent
variables on the likelihood of having one outcome (e.g., compromise)
versus another outcome (e.g., war), requiring separate estimates for
each pair of outcomes. As I examine four outcomes (AcqDef, AcqCh,
Compromise, War), the coefficients are estimated for six possible pairs
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of outcomes. For example, table 4.3 in chapter 4 gives the log-odds
coefficients for the effects of the power variables for all possible pairs
of outcomes: AcqCh vs. AcqDef, Compromise vs. AcqDef, War vs.
AcqDef, Compromise vs. AcqCh, War vs. AcqCh, Compromise Vvs.
War.

Since they indicate the log-odds ratios, these coefficients are useful
for indicating the sign and statistical significance of parameter esti-
mates, but they are not intuitively appealing for estimating the sub-
stantive significance of parameter estimates. In fact, all discrete choice
models, whether ordinal probit, nested logit, or any other, share the
property that their parameter estimates cannot be interpreted straight-
forwardly in terms of choice probabilities. Instead, additional compu-
tations are required.? In the case of the MNL estimates, to assess their
substantive significance, the probability of having a deterrence out-
come J rather than outcome K (a base category), given a set of values
in the explanatory variables (x)), is calculated as follows:

exp (B;x,)
Pr(Y=J)= ' (1)
L+ 2 exp(Bx,)

k=1

Given J + 1 outcomes, J number of equations are estimated to
show the effects of the explanatory variables on producing outcome J
rather than the baseline outcome K. The probability for choosing the
base case is

1
Pr(Y=0)= - (2)

L+ 20 exp(Byx,)

k=1

The sum of predicted probabilities for all four deterrence out-
comes should sum to a total of 100 percent. In table 4.4, for instance,
the relative probability p for each outcome occurring, given the same
set of values for the independent variable (e.g., power parity), is as fol-
lows: Pr(AcqDef) = 18.31 percent, Pr(AcqCh) = 51.94 percent,
Pr(Compromise) = 18.40 percent, Pr(War) = 11.35 percent. The sum of
these four probabilities is 100 percent. These MNL estimating proce-
dures were used for the empirical analyses in other chapters as well.

There are several advantages to the MNL model, and three in par-
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ticular are relevant for this analysis. First, like all other discrete choice
estimations, MNL is a nonlinear probability model, based on maxi-
mum likelihood (ML) estimation. Unlike linear probability models,
most commonly estimated by ordinary least squares (OLS), discrete
choice models do not assume that each unit change in the independent
variable produces a fixed change in the dependent variable. For exam-
ple, the effect of the power variable on deterrence outcomes may be
greater if two sides are relatively equal rather than vastly unequal. Sec-
ond, besides this common nonlinearity assumption of all discrete
choice models, MNL has the unique property of allowing that the rela-
tionship between the independent variables and each deterrence out-
come does not necessarily have the same functional form. For instance,
the use of MNL allowed us to see that the change in the distribution of
military capabilities or GNP from the Defender’s advantage to the
Challenger’s superiority, transiting through parity, does not yield uni-
form results. The effects are positive on the likelihood of AcqDef or
War, negative on the likelihood of AcqCh, and there is a curvilinear
relationship with the probability of compromise. Most other discrete
choice models would not provide such easily discernible patterns of
nonuniform functional form for the relationship between the explana-
tory factors and each of the four outcomes. The final advantage of the
multinomial model is that it does not require that any assumptions be
made about the ordered nature of deterrence outcomes. As already dis-
cussed, such an assumption should be handled with care, especially if
the sensitivity to different rank orderings is observed when analyzing a
variety of explanatory models. The results would be less biased and
more consistent across different theoretical models if no such assump-
tion is made (see also Stam 1996).

The only disadvantage of the MNL model lies in its property
known as the independence of irrelevant alternatives. The indepen-
dence of irrelevant alternatives (ILA) problem results from the MNL
assumption that the relative probability of choosing between two alter-
natives is unaffected by the presence of additional alternatives. How-
ever, the IIA property does not always have to bias the parameter esti-
mates. Whether it does simply depends on the nature of the data at
hand as well as on the theoretical model. The Hausman test, as pro-
posed by Hausman and McFadden (1984), is the standard procedure
to test whether the ITA property of the MNL model is problematic for
a particular empirical analysis (see Greene 1997; Long 1997; Kennedy
1998). It compares the estimators of the same parameters in two
slightly different models. One model is unrestricted, comprising all



Appendixes 241

choice categories of the dependent variable (i.e., alternatives); the other
model is restricted, one or more alternatives being excluded from the
original unrestricted model. If the IIA assumption is not significantly
violated in the data, then excluding one or more outcome choices from
the model (or, alternatively, including them in the model) should not
lead to a substantial change in the parameter estimates.

To test for the ITA restriction of the MNL models in this book, the
Hausman specification test was run for all models and all possible com-
binations of alternative eliminations. The results consistently showed
that ITA was not violated, and the inferences made from the MNL
models should not be suspect.* In other words, these results indicate
that none of the four deterrence outcomes can be reasonably substi-
tuted with another outcome since they are all dissimilar. As Amemiya
suggests in his influential study concerning the use of MNL model, “so
far as the alternatives are dissimilar, it [multinomial logit] is the most
useful multi-response model, as well as being the most frequently used
one” (1981, 1517). We can safely conclude, then, that the Hausman test
provides strong evidence that the use of MNL estimation was not prob-
lematic, and was even more appropriate, in this analysis. Although the
MNL model is fairly frequently used in econometrics, unfortunately
we find it only rarely used in the international relations literature (e.g.,
Stam 1996; Bennett and Stam 1998). Since it is reasonable to frame
most foreign policy choices as nominal (i.e., unordered discrete) vari-
ables, such a slim record of using MNL or other polychotomous dis-
crete choice estimations is quite alarming.

If the Hausman tests had failed, however, the only solution would
have been to choose one of the alternative polychotomous discrete
choice models that do not contain the IIA property. To understand
why these models are not a suitable choice for the analysis in this book,
besides the fact that the Hausman tests did not fail to warrant their use
as modeling alternatives to MNL, I will briefly outline their basic prin-
ciples, advantages, and shortcomings.

Conditional Logit. The conditional logit model also assumes poly-
chotomous unordered choices. Nevertheless, it is inappropriate for this
analysis since it is a choice-specific model. Namely, explanatory variables
are considered to vary for different choices, unlike MNL where they are
invariant to the choice categories. As an illustration, in multinomial logit,
the power variable does not vary according to the properties of the alter-
natives available to decision makers (e.g., one’s acquiescence or compro-
mise). In the conditional logit model, however, the explanatory variables,
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such as relative power and other factors, are assumed to be choice-
specific, taking on different values dependent on whether the decision
makers consider to acquiesce, compromise, or fight.

Since the conditional logit also maintains the ITA assumption, the
selection between multinomial and conditional logit models should
depend primarily on whether explanatory variables are framed as
choice- or individual-specific in the theoretical model. Conditional
logit would be a convenient method if we were to explore, for instance,
how much the costliness of actions in terms of the involved use of force
affects a decision maker’s choice between different courses of actions.
On the other hand, it is clear that the factors of interest in this analysis,
such as relative power, regional interests, or domestic regime type, vary
only across states, but not across different choices that states have to
make. The use of conditional logit is, therefore, inappropriate for the
models tested here.

Nested Logit. 1f a multinomial logit model fails the independence of
irrelevant alternatives test, one must use an alternative model that per-
mits the interdependence of alternatives. Multinomial probit and
nested logit are considered as main alternatives to MNL when the ITA
property is violated in the data.> To specify the nested logit model,
originally developed by McFadden (1981), we need to partition the
choice set into branches, assuming a similarity of choices within each
branch or subset of choices. Most commonly, the partitioning is
sequential, dividing the choice set into branches as if the outcome cat-
egories represented different stages in the decision-making process. In
the context of this analysis, deterrence outcomes such as compromise
or one side’s acquiescence do not necessarily represent different stages
in a sequence of decisions. Thus, the use of nested logit should be ruled
out. Moreover, a number of studies report that different specifications
of the tree structure, holding all other factors equal, lead to different
results. It is then critical to point out that the decision of how choices
are assumed to be nested can bias the estimators. To date, there is no
rigorous procedure for testing the statistical validity of tree structures,
further compounding the problem of incorporating the sequential
nature of outcomes into the analysis.

Multinomial Probit. The multinomial probit model allows for IIA to
be violated in data, but its computational complexity often limits its
use. The model requires an estimation of multiple integrals across sep-
arate bivariate normal distributions, which are difficult to compute,
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especially when there are more than three choices (Greene 1997, 912).
Also, although the MNP eliminates the IIA problem, it is not free from
related restrictive specifications. Namely, it assumes that the errors
across choices can be correlated, but computational problems arise if
these correlations are left completely unrestricted. The computation of
multiple integrals can, in turn, become unfeasible due to the conver-
gence problems. For this reason, it is expected that the values for the
correlations between error terms be specified in order to make multin-
omial probit computation possible. Note that in the multinomial logit
model, the correlation between error terms is assumed to be zero. It is
precisely this restriction that gives rise to the IIA problem. In the multi-
nomial probit estimation, we need to specify the values (other than
zero) for the correlations in order to incorporate them in the model.
Substantively, this means that we need to have a theory that will
inform us concerning the numerical correlation between the outcome
categories. With the example at hand, this requirement expects us to
answer the question of how each deterrence outcome is related to
another outcome. We also must decide if the correlations between each
pair of outcomes are equal and express them numerically. Such deci-
sions are assumed to be driven by theory, even though such theory
rarely exists. The imposition of the restrictions on correlations, there-
fore, is most likely to bias the resulting estimators. In other words,
multinomial probit avoids the assumption that the correlations across
terms have zero value, but still requires the researcher to specify their
value in order to make the estimations feasible, which is ultimately an
arbitrary choice. This again brings us back to the conclusion that the
multinomial logit model is the most appropriate for testing the theory
in this book.



